Alessandro Alunni,Constance Pierre,Jorge Torres-Paz,Natacha Cliaire,AurianeLanglumé等。发展,生长与分化,2023,65(9),pp.517-533。10.1111/dgd.12896。hal-04265637
作为新热带淡水的面部令人震惊的生物多样性丧失,迫切需要更有效,准确的生物监测工具,而这些工具比传统方法需要更少的分类专业知识。虽然对水或沉积物环境DNA(EDNA)的分析已迅速越来越受欢迎,但越来越多的研究正在研究“天然采样器” - 通过其喂养行为汇总Edna的生物 - 作为生物监测的工具。在这里,我们研究了大型新热带河流中丰富且分布广泛的淡水虾是否可以提供可靠的局部鱼类组合的快照。对虾饮食DNA的多标记元法码分析显示,研究区域的10天库存含量如此之多,而物种是监视计划中常用的基于Gillnet的方法的近三倍。这些有害生物的通才和机会喂养行为允许以大小的大小来检测广泛的物种,包括被传统的基于吉尼特的调查所忽略的小型。此外,由于近乎详尽的条形码参考数据库的可用性,大多数鱼类群都在物种水平上识别出来。随着分子分析的成本和速度继续降低,采样和加工的相对易于性使得该方法特别适合进行快速的生物多样性评估,并检测人类植物干扰的局部生态系统影响,互补观察方法,互补可提供对丰度,生物群,生物群和条件的数据。
“人类食品系统是环境中生物多样性丧失的巨大驱动力。同时,我们的食品系统中的生物多样性维持了人类所依赖的营养。”“我希望这些信息可以帮助提供指导并确定解决方案,以便我们的粮食系统变得更加可持续,从而使人类健康和生态系统受益。”
1个神经社会记忆的实验室,生理学研究所,分子生物学和神经性研究(ifibyne),Conicet,fceyn-uba,4个布宜诺斯艾利斯,阿根廷。 div>5 2生物多样性与实验和应用生物学研究所(IBBEA-Conicet),布宜诺斯艾利斯,阿根廷6 3 3 3社会行为神经内分泌学实验室,生理学,分子生物学和神经科学研究所(Ifibyne)(ifibyne),7 Conicet,Fceyn-buba,ficeyn-uba,buenestina,buenentina,buenentina,buenentina,buenentina,buenentina 89 *9 *
细菌间竞争会塑造宿主中发现的微生物群落,但是这场比赛与宿主防御之间的相互作用尚不清楚。在这里,我们使用斑马鱼后脑心室(HBV)作为体内平台,以研究具有不同形式的细菌间竞争形式的定义细菌群落的宿主反应。我们发现,来自Vibrio Cholerae和Acinetobacter baylyi的VI型分泌系统(T6SS)的抗菌活性都可以诱发宿主炎症,并使宿主敏感到独立于任何个体效应子的感染。化学抑制炎症可以解决宿主存活中T6SS依赖性差异,但是两种细菌物种之间发生这种情况的机制有所不同。相比之下,尽管志贺氏菌sonnei菌株是一种更有效的细菌杀手,但引起了大结菌素介导的拮抗作用,导致宿主的反应可忽略不计,导致对A的影响没有影响。baylyi或v。霍乱毒力。总的来说,这些结果提供了有关体内不同模式的不同模式如何以不同的方式影响宿主的方式。
描述:成人斑马鱼模型的神经行为和生理数据的数据库,通过为斑马鱼遗传信息提供了可用的存储库,通过提供动态的,开放的访问数据存储库,这些数据库是全面的,经过精心策划的Zebrafish Neurobafish Neurobobehavioral实验的结果收集的。截至2012年5月,它包含超过4500多个实验结果,来自75多种独特的生理和行为测试以及330种不同的药物治疗。ZNP结合了该领域发表的工作的经过验证和策划的数据,以提高对使用成人斑马鱼模型有兴趣的研究人员的当前知识的可访问性。总体而言,该计划将允许研究人员快速审查数据,并使用这些模型指导他们的研究。数据和协议提交现在正在接受。
Erwan Bourdonnais,CédricLeBris,Thomas Brauge,Graziella Midelet。跟踪英国河道和北海地区野生平菲鱼中的抗菌抗性指示基因:一个健康问题。环境污染,2024,343,pp.123274。10.1016/j.envpol.2023.123274。hal- 04384404
对公平,多样性,包容性和可及性(EDIA)的有意义的行动是新斯科舍省政府中的优先事项,以确保我们的劳动力,我们的计划和服务代表了我们服务的多元化公众。渔业和水产养殖部致力于倡导一个更具包容性,多样性,公平和易于获得的工作场所,并支持我们渔业和水产养殖部门的包容,多样性,公平和可及性。FAEEIF申请人被要求描述如何将Edia Lens应用于其工作和拟议项目的交付。
CRISPR/Cas9 基因组编辑技术极大地促进了多种生物体内和体外基因的靶向失活。在斑马鱼中,只需将向导 RNA (gRNA) 和 Cas9 mRNA 注射到单细胞阶段胚胎中,即可快速生成敲除系。在这里,我们报告了一种简单且可扩展的基于 CRISPR 的载体系统,用于斑马鱼的组织特异性基因失活。作为原理证明,我们使用带有 gata1 启动子的载体来驱动 Cas9 表达,以沉默与血红素生物合成有关的 urod 基因,特别是在红细胞谱系中。Urod 靶向在斑马鱼胚胎中产生了红色荧光红细胞,重现了在 yquem 突变体中观察到的表型。虽然 F0 胚胎表现出嵌合基因破坏,但这种表型在稳定的 F1 鱼中似乎非常明显。该载体系统构成了空间控制基因敲除的独特工具,大大拓宽了斑马鱼功能丧失研究的范围。
(100%) OK C2 C3 D1 黑鲳鱼片 Parastromateus niger Parastromateus niger (100%) OK D2 D3 E1 日本红鲂鱼片 Nemipterus japonicus Nemipterus japonicus (99.8%) OK E2