背景和目标:印度尼西亚海洋事务和渔业部引入了其蓝色经济框架,以促进对海洋和渔业资源的可持续使用,同时确保生态系统保护。这项研究调查了该部发起的五个主要计划,这些计划集中于生态可持续性和有效使用印度尼西亚的海洋生物多样性:扩大海洋保护区,实施基于配额的渔业系统,监测沿海和小岛地区,促进可持续的水产养殖以及解决海洋塑料污染。本研究的重点是该部渔业蓝色经济计划的应用,试图建立从运营两年中积累的经验中得出的未来策略。方法:用于评估这些关键举措的实施,使用参与式方法,包括焦点小组讨论,半结构化访谈和关键的线人访谈,用于收集对计划实施经验和学习经验的见解。通过封闭和开放式问题的融合进行了面对面的访谈。重点是关键信息,其中包括四个将军,七个单位协调员,非政府组织成员以及渔民团体的参与者的代表。经过预测试和随后的修订后,最终的问卷被敲定了25个问题。海洋保护计划的扩展导致建立了总计9750万公顷的保护区。These covered topics such as knowledge of the Ministry's five key initiatives, understanding of regulatory enforcement, perceptions of blue economy management, and suggestions for future strategies FINDINGS: The implementation of quota-based fisheries system, known as Penangkapan Ikan Terukur, has demonstrated significant progress, particularly in fisheries management area 718, where increased vessel landings have minimized the need for transporting catches back to Java.尽管如此,在有效地联系这些领域的情况下仍存在持续的挑战,这在很大程度上归因于其广阔的资金和资金不足。可持续的水产养殖已被优先考虑,每周一循环的虾养殖生产率从0.6吨增加到40吨。此外,海事智能平台还完善了海洋和渔业活动的许可程序,从而更好地遵守法规。该部的公开参与活动“爱大海”已经动员了两年,在两年内动员了2858名参与者,从海洋中消除了近172吨塑料废物。结论:虽然资源限制和对先进技术采用的需求持续存在的挑战,但蓝色经济倡议表现出强大的成功潜力。定期监控和评估在解决这些问题方面起着至关重要的作用,从而巩固了印度尼西亚对海洋资源可持续管理和蓝色经济原则的承诺。
迁徙鱼与人类社会有着密切的联系。在Tocantins- Araguaia盆地中,一个以高生物多样性,原产性和环境退化为标志的地区,几乎没有关于这些鱼类的信息。在这种情况下,本研究调查了potamodomous鱼类的分类学和功能多样性,目的是编译第一个物种清单,并检查物种丰富度,组成和功能多样性的模式。根据Tocantins-Araguaia和Amazon盆地的鱼类多样性的最新文献分配了每个物种的迁徙状况。这项研究巩固了77种Potamodomous鱼类(三个订单,12个家庭和41个属)的清单,其中包括八个流行性,三个受到威胁和两个非本地物种。pimelodidae总结了大多数物种,其次是Serrasalmidae和Curimatidae。大多数物种被归类为培养基(42)和长距离(32)移民,很少进行大陆迁移(3)。大多数物种广泛分布在盆地中,导致物种丰富度,组成和功能多样性的空间变化很小。但是,特征组成在物种,家庭和迁徙量表之间各不相同。这是该盆地中迁徙鱼类的第一个广泛评估,有可能生成基本信息以支持渔业管理,环境规划和保护计划。
举起大水族馆可能是一项具有挑战性的任务,尤其是在您不熟悉的情况下。但是,使用正确的设备,技术和预防措施,您可以安全有效地进行。首先,您需要评估水族馆的重量和大小。这包括使用比例或根据尺寸和材料类型来计算其重量。然后考虑储罐的形状 - 长而矩形可能更容易与多人抬起,而高大的圆形坦克需要专门的设备。接下来,评估水族馆的位置以及可能阻碍提升的任何障碍。考虑到这些因素,您可以计划安全的举动,而不会冒着伤害或损害。在准备升降机时,必须考虑水族馆的大小和重量。这将有助于确保安全提升并最大程度地减少潜在的不幸。事先准备该区域至关重要,因为它涉及清除附近附近的任何障碍或碎屑。应该建立一条清晰的路径,地板应保持水平,足够坚固,以支撑水族馆的重量以及起重设备的任何额外重量。根据水箱的尺寸和重量,可能有必要加固地板或使用专门的起重设备来防止损坏或事故。要确保安全而成功的升降机,请花时间正确准备该区域。这包括确定运输水族馆时将要采取的路径,并确保该区域清除可能造成绊倒危险的障碍。1。2。3。4。也必须确保有足够的空间容纳水族馆,并且没有可能损坏坦克或使其倾斜的低悬挂障碍物。清除任何障碍区域,并取出附近的家具或装饰,可以最大程度地减少受伤和财产损失的风险,从而使更顺畅,更有效的提升过程。准备升降机时,请评估地板的状况以确保其不平坦或不均匀,因为这可能是另一种潜在的危险。举起重物需要仔细的计划和准备,以避免受伤或损害。拥有可靠的合作伙伴可以帮助您完成整个过程,以确保平稳安全的升降机。准备该区域时,彻底保护它并收集您的团队以帮助完成任务。要成功举起一个大型水族馆,考虑其重量,并有足够的人提供帮助。始终优先考虑适当的提升技术,例如用腿而不是向后提起,保持水族馆靠近您的身体,并保持稳定的抓地力。这将均匀地分配体重并防止事故。此外,膝盖弯曲并保持背部直截了当可以大大降低受伤的风险。在握住物体时突然扭曲或突然移动对于避免严重伤害也是必不可少的。使用适当的举重技术不仅可以确保安全升降机,还可以保护您的脊柱对齐,并避免应压下背部。采取这些预防措施,您可以自信地完成任务,而不必担心事故或伤害。避免自来水,因为它含有有毒的氯。提起大型水族馆需要仔细考虑以防止伤害并确保在运输过程中坦克的安全。要考虑的关键因素包括水族馆的重量,路径中的障碍以及安全地抬起和安全移动所需的人数。不建议仅靠一个大型水族馆,因为这会导致严重的伤害或损坏坦克。至少有两个人可以协助提起和移动水族馆。此外,使用诸如提起绑带,吸杯或专门为水族馆设计的多莉(Dolly)提供额外的支撑和稳定性。为了防止在举起时受伤,使用适当的技术至关重要,包括用双腿而不是背部举起,使背部伸直,穿着良好的牵引力穿着合适的鞋子以及与举重伴侣进行交流。在运输过程中固定水族馆涉及使用皮带或蹦极绳以防止其转移或滑动,并在油箱周围放置毯子或填充以保护其免受颠簸或撞击。在其新位置建立一个大型水族馆需要仔细的计划。首先,确保表面可以支撑水族馆的重量,然后添加水和装饰,并让水箱在加入鱼之前正确循环。也必须考虑将鱼类从一个水族馆转移到另一种水族馆的物流,因为这可能是一项艰巨的任务,需要耐心和计划。在搬迁方面,甚至更大的鱼缸也会构成独特的挑战。为了确保平稳的过程,请测量新位置并在移动前清除任何障碍。您需要制定计划,以应对可能出现的情况,例如翻新工作,目的变化,供暖或照明问题或审美原因。一些意外的情况包括控制对油箱的使用,移动的设备以及处理大型储罐尺寸。断开加热器,泵和过滤器等设备,将其放入水罐水中以保护有益的细菌。取出水族馆的水,但要留出足够的舒适性,然后取出水下装饰。最后,卸下储罐装饰,以最大程度地减少重量和搬迁期间的潜在损害。注意:我以40%的概率随机选择了“添加拼写错误(SE)”重写方法,然后将其应用于文本。错误是偶尔且罕见的,可以在保持原始含义的同时确保可读性。所有的鱼首先要小心和美味处理,尤其是在敏感的情况下。每种人的互动都会引起一定程度的压力;通过使用渔网将它们收集并将其转移到带有水箱水的单独容器中,从而最大程度地减少了创伤。保持水族馆泵的运行,将其设置在固定鱼的临时容器中。这将维持氧合,表面搅拌并保留有益细菌培养物。不要关闭泵15分钟或更长时间,因为这会损害这些微生物。拆除装饰,设备和鱼后,您现在可以去除剩余的坦克水。清洁藻类沉积物的储罐壁,处理污垢和废物,并保存清洁的水以重复使用。再次设置主罐时,用相同的水重新填充它。如果使用自来水,请至少24小时呼吸或煮沸以加快消除氯的速度。将自来水与一些水箱水混合,然后将其倒入主罐中,以引入必需的矿物质和细菌。接下来,卸下并清洁基板以进行体重管理和清洁目的。使用储罐水清洁颗粒中的鱼类废物,藻类和食物残留物。然后,请注意将水箱移入其新位置,并用毯子覆盖以防止事故。从家人或朋友那里获得帮助,并用毯子或床单抓住滑水罐。通过这些步骤,您将在搬迁过程中最大程度地减少鱼的压力。固定水箱:轻轻调整储罐以适合您的视力,从各个角度确保稳定性。避免增加体重时可能发生的倾斜或摇摆。补充水族馆水:倒回您去除的最初50%的水,以便于使用鱼类。您的坦克现在应该半满,可以准备鱼的到来。使用较小的杯子转移水以更好地控制并最大程度地减少溢出风险。添加装饰:首先移动装饰以最大程度地减少鱼类压力。在介绍鱼之前将它们整齐地放在指定的位置。使用鱼网或袋子重新安置鱼,注意不要进一步打扰它们。介绍鱼:将鱼轻轻释放到他们的新环境中。如果您有学校,请使用袋子进行无缝搬迁;对于1-2个大鱼,鱼网就足够了。5。6。准备解决可能出现的任何问题。移动鱼后,仔细倒入剩余的水中,以免破坏水生生物,并破坏植物或装饰。重新连接设备:将所有物品放回原处,仅在检查电源周围的任何湿区后,才能确保安全连接并将设备插入主电源。监视储罐:观察储罐的动态至少几个小时,以确保稳定性并检测潜在的氨积累或应力迹象。通过遵循这些步骤,您将最大程度地降低风险并成功地重新安置水族馆,同时维持健康的鱼类环境。
科学的底部拖网调查是沿着大陆货架和海洋和海洋的斜坡进行的生态观察计划,这些计划采样了与海底相关的海洋社区。这些调查报告了时空的发生,丰度和/或体重的发生,并有助于渔业管理以及人口和生物多样性研究。底部拖网调查是在世界各地进行的,代表了了解海洋生物地理,宏观生态学和全球变化的独特机会。但是,将这些数据结合在一起以进行跨生态系统分析仍然具有挑战性。在这里,我们提供了一个综合数据集,该数据集由29个公开可获得的底段调查,在18个国家/地区的国家水域进行了标准化和预处理,总共涵盖了2,170个采样的鱼类分类单元,并从1963年至2021年收集了216,548次拖船。我们描述了创建数据集,标志和标准化方法的处理步骤,我们开发了这些方法,以帮助用户使用稳定的区域调查足迹进行时空分析。该数据集的目的是在全球变化的背景下支持研究,海洋保护和管理。
Agersnap,S.,Larsen,W.B.,Knudsen,S.W.,Strand,D.,Thomsen,P.F.,Hesselsøe,M。Etal。(2017)。使用淡水样品中的环境DNA对贵族,信号和狭窄的小龙虾进行监测。plos One,12(6),1 - 22。https://doi.org/10.1371/journal.pone。0179261 Baudry,T.,Mauvisseau,Q.,Goût,J.,Arqué,A.,Delaunay,C.,Smith-Ravin,J。等。(2021)。在生物多样性热点中绘制一个超级侵蚀者,这是一个基于埃德娜的成功故事。生态指标,126,107637。https://doi.org/10.1016/j.ecolind.2021.107637 Bedwell,M.E。&Goldberg,C.S。(2020)。环境DNA检测的空间和时间模式,以告知灯杆和底漆系统中的采样方案。生态与进化,10(3),1602 - 1612。https:// doi.org/10.1002/ece3.6014 Belle,C.C.,Stoeckle,B.C。&Geist,J。(2019)。水生保护中淡水环境DNA研究的分类和地理代表。水上保护:海洋和淡水生态系统,29(11),1996 - 2009年。https://doi.org/10.1002/aqc.3208 Biotope。(2020)。eTuded'Améliorationde la Connaissance sur le Poisson Gale(AnablePsoides Cryptocallus):分布,Étatde Conservation,Mesures Et推荐。https://www.observatoire-eau-martinique.fr/ documents/rapport-poisson-gale-vf.pdf Brys,R.,Halfmaerten,D.,Neyrinck,S.,Mauvisseau,Mauvisseau,Q.(2020)。可靠的EDNA检测和欧洲天气loach(Misgurnus possilis)的定量。(2009)。(2019)。鱼类生物学杂志,98(2),399 - 414。https://doi.org/10.1111/jfb.14315 Bustin,S.A.,Benes,V.,Garson,J.A. MIQE指南:最少发表定量实时PCR实验的信息。 临床化学,55(4),611 - 622。https://doi.org/10.1373/clinchem.2008。 112797 Cantera,I.,Cilleros,K.,Valentini,A.,Cerdan,A.,Dejean,T.,Iribar,A。等。 为热带流和河流中的鱼类库存优化环境DNA采样工作。 科学报告,9(1),1 - 11。https://doi.org/10.1038/S41598-019-019-39399-5 Ceballos,G.,Ehrlich,P.R.,P.R.,Barnosky,Barnosky,Barnosky,A.D. &Palmer,T.M。 (2015)。 加速现代人类引起的物种损失:进入第六次巨大灭绝。 科学进步,1(5),E1400253。 https://doi.org/10.1126/sciadv.1400253 Cowart,D.A.,Breedveld,K.G.H.,Ellis,M.J.,M.J.,Hull,J.M. &Larson,E.R。 (2018)。 环境DNA(EDNA)用于保护危险的小龙虾(Decapoda:Astacidea),通过监测入侵物种障碍和重新定位的种群。 甲壳类生物学杂志,38(3),257 - 266。https://doi.org/10.1093/jcbiol/jcbiol/ ruy007 Cristescu,M.E。 (2019)。 环境RNA可以革新生物多样性科学吗? 生态与进化的趋势,34(8),694 - 697。https:// doi。 org/10.1016/j.tree.2019.05.003 Deal Martinique,Ecovia。 &Creocean。 (2018)。 诊断 - Martinique环境环境。 https://www.martinique。鱼类生物学杂志,98(2),399 - 414。https://doi.org/10.1111/jfb.14315 Bustin,S.A.,Benes,V.,Garson,J.A.MIQE指南:最少发表定量实时PCR实验的信息。临床化学,55(4),611 - 622。https://doi.org/10.1373/clinchem.2008。112797 Cantera,I.,Cilleros,K.,Valentini,A.,Cerdan,A.,Dejean,T.,Iribar,A。等。为热带流和河流中的鱼类库存优化环境DNA采样工作。科学报告,9(1),1 - 11。https://doi.org/10.1038/S41598-019-019-39399-5 Ceballos,G.,Ehrlich,P.R.,P.R.,Barnosky,Barnosky,Barnosky,A.D.&Palmer,T.M。(2015)。加速现代人类引起的物种损失:进入第六次巨大灭绝。科学进步,1(5),E1400253。https://doi.org/10.1126/sciadv.1400253 Cowart,D.A.,Breedveld,K.G.H.,Ellis,M.J.,M.J.,Hull,J.M.&Larson,E.R。(2018)。环境DNA(EDNA)用于保护危险的小龙虾(Decapoda:Astacidea),通过监测入侵物种障碍和重新定位的种群。甲壳类生物学杂志,38(3),257 - 266。https://doi.org/10.1093/jcbiol/jcbiol/ ruy007 Cristescu,M.E。(2019)。环境RNA可以革新生物多样性科学吗?生态与进化的趋势,34(8),694 - 697。https:// doi。org/10.1016/j.tree.2019.05.003 Deal Martinique,Ecovia。&Creocean。(2018)。诊断 - Martinique环境环境。https://www.martinique。developpement-durable.gouv.fr/img/pdf/diagnostic_vf.3.pdf deiner,K。&Altermatt,F。(2014)。自然河中无脊椎动物环境DNA的运输距离。PLOS ONE,9(2),E88786。https://doi.org/10.1371/journal.pone.0088786 Dorazio,R.M。 &Erickson,R.A。 (2018)。 ednaocupancy:用于环境DNA数据的多尺度占用建模的R包。 分子生态资源,18(2),368 - 380。https://doi.org/10.1111/1755-0998.12735 Ferreira,A.R.L.,Sanches Fernandes,L.F.,L.F. &Pacheco,F.A.L。 (2017)。 使用嵌套的部分最小二乘回归评估对河流生态系统的人为影响。 总体科学https://doi.org/10.1371/journal.pone.0088786 Dorazio,R.M。&Erickson,R.A。 (2018)。ednaocupancy:用于环境DNA数据的多尺度占用建模的R包。分子生态资源,18(2),368 - 380。https://doi.org/10.1111/1755-0998.12735 Ferreira,A.R.L.,Sanches Fernandes,L.F.,L.F.&Pacheco,F.A.L。(2017)。使用嵌套的部分最小二乘回归评估对河流生态系统的人为影响。总体科学
Avise,J。C.(1989)。分子标记,自然历史和进化。纽约,纽约:施普林格。Bellwood,D。R.和Meyer,C。P.(2009)。 在海洋生物多样性热点中寻找热量。 生物地理学杂志,36,569–576。 https://doi.org/10.1111/j.1365-2699.2008.02029.x Bermingham,E.,McCafferty,S。,&Martin,A。P.(1997)。 鱼类生物地球和分子时钟:来自巴拿马伊斯兰教的观点。 在T. D. Kocher和C. A. Stepien(编辑) ),鱼类的分子系统学(pp。 113–128)。 圣地亚哥,加利福尼亚州:学术出版社。 Bouckaert,R。R.,Heled,J.,Kühnert,D.,Vaughan,T.,Wu,C.-H.,Xie,D. (2014)。 野兽2:用于贝叶斯进化分析的软件平台。 PLOS计算生物学,10,E1003537。 https://doi.org/10.1371/journ al.pcbi.1003537 Chase,J.M。,&Leibold,M。A. (2002)。 空间量表决定了生产力的关系。 自然,416,427–430。 https:// doi。 org/10.1038/416427a Chin,T。C.,Adibah,A。 B.,Danial Hariz,Z。 A.和Siti Azizah,M。N.(2016)。 通过DNA钢筋编码:提高食品市场的透明度来检测马来西亚标记错误的海鲜产品。 食品控制,64,247–256。 https://doi.org/10.1016/j.foodc ont.2015.11.042 Cinner,J.E.,Graham,N.A。J. (2013)。 在珊瑚礁渔业状况下,当地人口密度和与市场距离的全球影响。 罗马。Bellwood,D。R.和Meyer,C。P.(2009)。在海洋生物多样性热点中寻找热量。生物地理学杂志,36,569–576。https://doi.org/10.1111/j.1365-2699.2008.02029.x Bermingham,E.,McCafferty,S。,&Martin,A。P.(1997)。鱼类生物地球和分子时钟:来自巴拿马伊斯兰教的观点。在T. D. Kocher和C. A. Stepien(编辑),鱼类的分子系统学(pp。113–128)。圣地亚哥,加利福尼亚州:学术出版社。 Bouckaert,R。R.,Heled,J.,Kühnert,D.,Vaughan,T.,Wu,C.-H.,Xie,D. (2014)。 野兽2:用于贝叶斯进化分析的软件平台。 PLOS计算生物学,10,E1003537。 https://doi.org/10.1371/journ al.pcbi.1003537 Chase,J.M。,&Leibold,M。A. (2002)。 空间量表决定了生产力的关系。 自然,416,427–430。 https:// doi。 org/10.1038/416427a Chin,T。C.,Adibah,A。 B.,Danial Hariz,Z。 A.和Siti Azizah,M。N.(2016)。 通过DNA钢筋编码:提高食品市场的透明度来检测马来西亚标记错误的海鲜产品。 食品控制,64,247–256。 https://doi.org/10.1016/j.foodc ont.2015.11.042 Cinner,J.E.,Graham,N.A。J. (2013)。 在珊瑚礁渔业状况下,当地人口密度和与市场距离的全球影响。 罗马。圣地亚哥,加利福尼亚州:学术出版社。Bouckaert,R。R.,Heled,J.,Kühnert,D.,Vaughan,T.,Wu,C.-H.,Xie,D.(2014)。野兽2:用于贝叶斯进化分析的软件平台。PLOS计算生物学,10,E1003537。https://doi.org/10.1371/journ al.pcbi.1003537 Chase,J.M。,&Leibold,M。A.(2002)。空间量表决定了生产力的关系。自然,416,427–430。https:// doi。org/10.1038/416427a Chin,T。C.,Adibah,A。B.,Danial Hariz,Z。 A.和Siti Azizah,M。N.(2016)。 通过DNA钢筋编码:提高食品市场的透明度来检测马来西亚标记错误的海鲜产品。 食品控制,64,247–256。 https://doi.org/10.1016/j.foodc ont.2015.11.042 Cinner,J.E.,Graham,N.A。J. (2013)。 在珊瑚礁渔业状况下,当地人口密度和与市场距离的全球影响。 罗马。B.,Danial Hariz,Z。A.和Siti Azizah,M。N.(2016)。通过DNA钢筋编码:提高食品市场的透明度来检测马来西亚标记错误的海鲜产品。食品控制,64,247–256。https://doi.org/10.1016/j.foodc ont.2015.11.042 Cinner,J.E.,Graham,N.A。J.(2013)。在珊瑚礁渔业状况下,当地人口密度和与市场距离的全球影响。罗马。保护生物学,27,453–458。https://doi.org/10.1111/j.1523-1739.2012.01933.x Cinner,J.E.,Huchery,C.,Macneil,M.A.,Graham,N.A.J.世界珊瑚礁之间的亮点。自然,535(7612),416–419。https://doi.org/10.1038/ Natur E18607 Collet,A.,Durand,J.D.,Desmarais,E.DNA条形码在大型后可以改善有关鱼类生物多样性的知识:来自SW印度洋La Reunion的一个例子。线粒体DNA A部分,29(6),905–918。https:// doi。org/10.1080/24701 394.2017.1383406 Collins,R.A。,&Cruickshank,R.H。(2014)。已知已知的未知数未知数未知和未知数在DNA Barcoding中:对Dowton等人系统生物学的评论,63(6),1005–1009。https://doi.org/10.1093/sysy.1093/sysysbi O/syu060 delrieu-delrieu--trottin,E.,e.,j。t。法国波利尼西亚海岸鱼类的DNA条形码参考库。科学数据,6(1),114。https:// doi。org/10.1038/s4159 7-019-0123-5 Di Pinto,A.,Marchetti,P.,Mottola,A.,Bozzo,G.,G.,Bonerba,E.使用DNA条形码在鱼片中的物种鉴定。渔业研究,170,9-13。https:// doi。org/10.1016/j.fishr es.2015.05.006 Durand,J.-D.,Hubert,N.,Shen,K.-N。,&Borsa,P。(2017)。DNA灰色mul虫。《鱼类生物学与渔业》中的评论,27(1),233-243。粮农组织(2018)。https://doi.org/10.1007/s1116 0-016-9457-7 Erdmann,M。,&Allen,G。R.(2012)。 东印度群岛的礁鱼。 珀斯,澳大利亚:嗯。 la Cheation MondialedesPêches等人2018。 atteindre les objectifs dedévelopment耐用。 Ficetola,G。F.,Miaud,C.,Pompanon,F。,&Taberlet,P。(2008)。 使用水样中的环境DNA检测物种。 生物学信,4,423–425。 https://doi.org/10.1098/rsbl.2008.0118 Froese,R。,&Pauly,D。(2014)。 fishbase .http://www.fishb ase.org,electronic版本访问了11/2019。 Fujisawa,T。和Barraclough,T。G.(2013)。 使用Single-Locus数据和广义混合Yule Colescent方法对物种进行分解:对模拟数据集的修订方法和评估。 系统生物学,62(5),707–724。 https://doi.org/10.1093/sysbi o/syt033 Gaboriau,T.,Leprieur,F.,Mouillot,D。,&Hubert,N。(2018)。 物种地理位置对印度太平洋地区珊瑚礁鱼类生物多样性当前模式的影响。 Ecograph,40,1295–1306。 https://doi.org/10.1111/ecog.02589https://doi.org/10.1007/s1116 0-016-9457-7 Erdmann,M。,&Allen,G。R.(2012)。东印度群岛的礁鱼。珀斯,澳大利亚:嗯。la Cheation MondialedesPêches等人2018。atteindre les objectifs dedévelopment耐用。Ficetola,G。F.,Miaud,C.,Pompanon,F。,&Taberlet,P。(2008)。使用水样中的环境DNA检测物种。生物学信,4,423–425。https://doi.org/10.1098/rsbl.2008.0118 Froese,R。,&Pauly,D。(2014)。fishbase .http://www.fishb ase.org,electronic版本访问了11/2019。Fujisawa,T。和Barraclough,T。G.(2013)。使用Single-Locus数据和广义混合Yule Colescent方法对物种进行分解:对模拟数据集的修订方法和评估。系统生物学,62(5),707–724。https://doi.org/10.1093/sysbi o/syt033 Gaboriau,T.,Leprieur,F.,Mouillot,D。,&Hubert,N。(2018)。物种地理位置对印度太平洋地区珊瑚礁鱼类生物多样性当前模式的影响。Ecograph,40,1295–1306。https://doi.org/10.1111/ecog.02589
作者的完整清单:路易兹的Miranda de Souza Duarte Filho; La Rochelle大学,UMR CNRS 7266 LIENSS ORTEGA DE OLIVEIRA,PAMELLA; Fluminense Federal University,Yanaguashi Leal Organic Chemistry,Cintia;联邦Vale University do do do do do do francisco de Moraes,Marcela Cristina;联邦Fluminense University,Pocot,Laurent; La Rochelle大学,UMR CNRS 7266 LIENS
摘要:成人神经发生是所有脊椎动物中发生的进化保守过程。然而,考虑到构成和损伤引起的条件下的神经源性壁ni,神经干细胞(NSC)身份,神经干细胞(NSC)身份以及大脑可塑性之间观察到明显的差异。斑马鱼已成为研究成人神经发生涉及的分子和细胞机制的流行模型。与哺乳动物相比,成年斑马鱼显示出大脑分布在整个大脑中的大量神经源性壁ni。此外,它表现出强大的再生能力,没有疤痕形成或任何明显的残疾。在这篇综述中,我们将首先讨论有关(i)成年斑马鱼和哺乳动物(主要是小鼠)和(ii)主脑脑脑壁iches中神经干细胞的性质的神经源性壁ches的分布。在第二部分中,我们将描述斑马鱼和小鼠端脑损伤后发生的一系列细胞事件。我们的研究清楚地表明,大多数早期事件发生在斑马鱼和小鼠之间,包括细胞死亡,小胶质细胞和少突胶质细胞募集,以及损伤引起的神经发生。在哺乳动物中,受伤后的后果之一是形成了持续存在的神经胶质疤痕。在斑马鱼中不是这种情况,这可能是斑马鱼表现出更高再生能力的主要原因之一。
药理学实验表明,神经肽可以有效调整神经元活性并调节运动输出模式。但是,它们在塑造先天运动方面的功能通常仍然难以捉摸。例如,先前已证明生长抑素在脑室中注射时会诱导运动,但是当在体外沐浴在脊髓中时,可以抑制虚拟的运动。在这里,我们通过在斑马鱼中淘汰生长抑素1.1(SST1.1)来研究生长抑素在先天运动中的作用。我们在数百个突变体和对照兄弟姐妹幼虫中自动化并仔细分析了数十万次爆发的运动运动学。我们发现SST1.1的缺失不会影响声学 - 卵形逃生反应,而是导致异常探索。SST1.1突变幼虫在更高速度的距离上游动并进行更大的尾弯,表明生长抑素1.1抑制了自发的运动。我们的研究完全表明,生长抑素1.1天生有助于减慢自发的运动。
a Xelect Ltd,Horizon House,苏格兰圣安德鲁斯 KY16 9LB,英国 b 综合遗传学中心,动物与水产养殖科学系,生物科学学院,挪威生命科学大学,挪威 Ås c 巴黎-萨克雷大学,国家农业研究所 (INRAE),法国 Jouy-en-Josas d 比较生物医学和食品科学系,意大利帕多瓦大学 e 欧洲分子生物学实验室,欧洲生物信息学研究所,Wellcome 基因组园区,欣克斯顿,剑桥,剑桥郡 CB10 1SD,英国 f INRAE,LPGP,鱼类生理学和基因组学,雷恩 F-35000,法国 g 海洋生物、生物技术和水产养殖研究所 (IMBBC),希腊海洋研究中心 (HCMR),伊拉克利翁,希腊 h 圣地亚哥德孔波斯特拉大学动物学、遗传学和体质人类学系,西班牙卢戈i 英国爱丁堡大学罗斯林研究所和皇家(迪克)兽医学院