棘冠海星 (COTS) 以在种群爆发期间吞食石珊瑚而破坏珊瑚礁而闻名。先前的研究表明,棘冠海星由四个物种组成,统称为 A. planci 物种复合体。尽管有可用的在线数据库序列,但太平洋 COTS 群(称为 Acanthaster solaris 或 Acanthaster cf. solaris)缺乏全面的形态描述和博物馆凭证标本。因此,本研究旨在使用形态特征和部分 CO1 线粒体基因对位于内格罗斯岛南部的两个地点的 COTS 标本进行表征。获得了大小、颜色、硬度、叉状棘、足尖棘和无足尖棘以及手臂的形态学和形态测量数据。收集了管足进行 DNA 条形码编码。使用 Kimura 2 参数替换模型确定了内格罗斯岛南部和 A. planci 物种复合体的参考序列之间的遗传分化。来自 SNI 的标本具有灰蓝色的无口体色,整个中央圆盘上分布着黑红色的斑点。体色变为灰白色,当动物暴露在空气中时,斑点会变得更红。它们全身有六种刺和微小的叉尾。从内格罗斯岛南部收集的所有 COTS 个体都与该物种复合体的太平洋群融合,标记为 Acanthaster cf. solaris 。内格罗斯岛南部序列和太平洋进化枝之间的种内遗传分歧分别为 0.192 和 0.38%。我们的结果证实了 A. cf. solaris 在菲律宾的存在,并提供了来自印度洋-太平洋地区的物种更全面的形态学描述。该物种的凭证标本存放在西利曼大学罗道夫·B·冈萨雷斯自然历史博物馆。
剥落的面罩是一种掩模,其中包含弹性材料,例如明胶,使其易于涂抹和去除。这些剥落的口罩通过散布以形成稀薄的透明膜层来施加到面部。pangasius cat鱼明胶是剥落蒙版制剂中的胶凝剂,而将astaxanthin添加为抗氧化剂。astaxanthin是一种类似于β-胡萝卜素的分子结构的类胡萝卜素色素,与β-胡萝卜素相比,在中和自由基中表现出更强的抗氧化活性。这项研究的目的是使用DPPH方法确定由Pangasius catfish(Pangasius hypophthalmus)明胶的剥落凝胶口罩的抗氧化活性。astaxanthin提取物用作剥落凝胶面膜产生的活性成分,astaxanthin提取物浓度为0.5%。由pangasius catfish明胶制成的剥落凝胶面膜的抗氧化活性测试的结果补充了astaxanthin,其IC 50值为7572.84 µg/ml,而比较面膜的IC 50值(亮柠檬黑头品牌)为5045.74 µg/ml。这些结果表明,与市场上可用的比较口罩相比,产生的面膜的抗氧化活性较低。
Altschul, SF, Gish, W., Miller, W., Myers, EW, & Lipman, DJ (1990)。基本局部比对搜索工具。分子生物学杂志,215,403 – 410。Arocha, F., Barrios, A., Silva, J., & Lee, DW (2005)。对中西部大西洋白枪鱼(Tetrapturus albidus)生殖腺发育、性成熟和繁殖力估计的初步观察。ICCAT 科学论文集,53,1567 – 1573。Arocha, F., & Ortiz, M. (2006)。白枪鱼。在 ICCAT 手册(第 129 – 141 页)中。国际大西洋金枪鱼保护委员会。 Ayala, D., Riemann, L., & Munk, P. (2016)。从形态学和 DNA 条形码分析马尾藻海亚热带辐合带鱼苗的物种组成和多样性。渔业海洋学, 25, 85 – 104。
在托斯卡纳(意大利中部),侵入性外星红沼泽小龙虾procambarus clarkii的人口出现在罗姆纳湖(Lake Romena),靠近国家公园,并威胁着保护本地白爪小龙虾澳大利亚小龙虾澳大利亚小龙虾pallipes pallipes pallipes。进行了一项现场研究,以通过密集的陷阱活动来减少clarkii群体的丰度,并使用三种不同类型的陷阱提高捕获的有效性:两个丝网陷阱(圆柱形和矩形)和人造避难所陷阱。这项研究还旨在评估湖动物群落的组成,特别是小龙虾捕食者(使用Edna)的存在,以及Clarkii P. clarkii的潜在传播。在2022 - 2023年在两个诱捕季节进行的控制活动导致小龙虾种群的丰度指数(每单位努力)的至少50%。圆柱形陷阱捕获了更多个体,尤其是大人物和男性,人造避难陷阱捕获了相对较大的女性和较小的个体。Edna采样强调了一个多元化的社区,主要由外星物种和一些小龙虾捕食者组成(例如,鱼)。在周围地区进行的调查显示,湖下游存在Clarkii。应保持使用不同类型的陷阱的控制活动,以进一步降低Clarkii P. clarkii的丰度,同时应进行其他管理活动,以停止该物种在湖外的传播,以防止其进一步的生态影响。
菲律宾是一个拥有大量水生植物的大型生物多样性国家,其中大多数是地方性的。拥有7,100多个岛屿构成其领土,菲律宾是一系列非凡的鱼类的家园。这些在丰富该国的内陆生物多样性方面起着至关重要的作用,其中一些具有很高的经济和商业价值。但是,这种极富的生物多样性正处于崩溃的边缘。在菲律宾的研究主要集中在海洋和陆地生态系统上,强调了内陆水域及其淡水鱼的研究差距很大。总共有374种属于29个订单和78个家庭的淡水鱼物种在菲律宾有记录。由于人类引起的各种影响,包括栖息地破坏,过度捕捞和引入物种的存在,大量的鱼类面临着很高的灭绝风险。这项研究调查了菲律宾目前存在的所有64种淡水鱼物种的侵入性风险。分别在当前和未来的气候条件下分别具有高或很高的侵入性风险。The highest risk species were goldfish Carassius auratus , Indonesian snakehead Channa micropeltes , largemouth black bass Micropterus salmoides , pirapitinga Piaractus brachypomus , vermiculated sailfin catfish Pterygoplichthys disjunctivus and Amazon sailfin catfish Pterygoplichthys pardalis .鉴于菲律宾淡水生态系统的高保护价值,利益相关者和环境经理需要努力缓解和预防已经存在的入侵鱼类的有害影响,并且需要预防措施来抵消任何其他非本地物种的引入。 这项研究的结果代表了一个国家的特定生物体的首次全面风险筛查,将成为制定共同法规以控制非本地鱼类的国际贸易的基础,以更高的入侵风险。鉴于菲律宾淡水生态系统的高保护价值,利益相关者和环境经理需要努力缓解和预防已经存在的入侵鱼类的有害影响,并且需要预防措施来抵消任何其他非本地物种的引入。这项研究的结果代表了一个国家的特定生物体的首次全面风险筛查,将成为制定共同法规以控制非本地鱼类的国际贸易的基础,以更高的入侵风险。
1.1 项目背景 肯尼亚政府 (GoK) 通过国家蓝色经济和渔业部 (SDBEF) 并在世界银行的支持下,正在实施肯尼亚海洋渔业和社会经济发展 (KEMFSED) 项目,旨在支持该国努力利用蓝色经济中的新兴机会。该项目的总体目标是改善优先渔业和海水养殖的管理,并增加沿海社区获得补充生计活动的机会。KEMFSED 项目在肯尼亚的沿海县实施,即蒙巴萨、夸勒、基利菲、塔纳河和拉穆,旨在加强对沿海生计优先的渔业的管理,从而通过监测、控制和监督确保鱼类资源处于可持续的收获水平。同时,该项目旨在加强沿海家庭获得补充生计活动的机会,以实现家庭收入来源多样化,减少对捕捞渔业的依赖。通过改善海洋和内陆水资源的管理和保护,减少非法捕捞活动,提高鱼产品在价值链中的价值,该部门有望提高其对整体经济的贡献。该项目包括以下三个部分:a) 部分 1:海洋渔业治理和管理,重点是改善
摘要 乙酰胆碱 (ACh) 是周围神经系统 (PNS) 和中枢神经系统 (CNS) 的重要神经递质,它通过烟碱型乙酰胆碱受体 (nAChR) 和毒蕈碱型乙酰胆碱受体 (mAChR) 发出信号。在这里,我们探讨了三个 nAChR 亚基 chrna3 、 chrnb4 和 chrna5 的表达模式,它们位于进化保守的簇中。在多种脊椎动物中,这种紧密的基因组定位可能表明共同功能和/或共同表达。通过新型转基因斑马鱼系,我们观察到 PNS 和 CNS 内广泛表达。在 PNS 中,我们观察到 chrna3 tdTomato 、chrnb4 eGFP 和 chrna5 tdTomato 在肠道神经系统中的表达; chrna5 tdTomato 和 chrnb4 eGFP 位于侧线的感觉神经节中;而 chrnb4 eGFP 位于耳朵中。在中枢神经系统中,chrnb4 eGFP 和 chrna5 tdTomato 的表达出现在视网膜中,这三种基因均在大脑的不同区域表达,其中一部分 chrna3 tdTomato 和 chrnb4 eGFP 细胞被发现是投射到侧线的抑制性传出神经元。在脊髓内,我们在运动网络内识别出表达 chrna3 tdTomato、chrnb4 eGFP 和 chrna5 tdTomato 的不同神经元群,包括表达 dmrt3a 的中间神经元和表达 mnx1 的运动神经元。值得注意的是,每个半节段的三到四个初级运动神经元均被 chrna3 tdTomato 和 chrnb4 eGFP 标记。有趣的是,我们在每个半节段中发现了一个 sl 型次级运动神经元,该神经元强烈表达 chrna5 tdTomato 并同时表达 chrnb4 eGFP。这些转基因系为 nAChRs 在运动网络中的潜在作用提供了见解,并为探索它们在整个神经系统一系列组织中尼古丁暴露和成瘾的作用开辟了途径。
生物电是存在于所有细胞中的一种基本生物物理现象,通过调节神经信号传导、模式形成和癌症抑制等过程,在胚胎发生过程中发挥着至关重要的作用。精确监测生物电信号及其在整个发育过程中的动态变化对于增进我们对高等生物的了解至关重要。然而,缺乏适合在早期发育过程中绘制生物电信号的技术,极大地限制了我们解释这些机制的能力。为了应对这一挑战,我们在斑马鱼中开发了一个 Ace2N-mNeon 表达文库,该文库在受精后 4 小时到受精后至少 5 天内表现出膜定位,并在整个发育过程中在多种细胞类型中广泛表达。我们验证了该文库用于研究生物电变化的用途,通过电压成像记录不同发育阶段的神经元和心肌细胞中的信号。通过这种方法,我们发现了早期胚胎发生过程中同步神经元活动的证据,并观察到随着发育的进展,心肌细胞中的电压动态更快。我们的结果表明,Ace2N-mNeon 库是发育生物电研究的宝贵工具,支持电压成像和荧光寿命成像 (FLIM) 等先进技术。这些方法能够在整个发育过程中对不同细胞类型的生物电信号进行非侵入性、动态监测,大大超越了当前电生理技术的能力。
制定了一项采样方案,通过过滤从水体中收集 eDNA。2021 年 11 月至 2023 年 2 月期间,至少四次从英格兰北部的六个水体采集样本。已知四个水体中存在一种或多种目标物种,两个作为对照点的地点不存在目标物种。这项研究表明,该方案在收集 eDNA 和最大限度地减少污染方面是有效的,工作人员报告说它很容易遵循。对样本进行了分析,以确定样本中是否存在白爪龙虾、信号龙虾和龙虾瘟疫 eDNA。基于 eDNA 的监测方法结果解释框架建议,鉴于已完成验证和测试此方法的工作,我们可以将阳性结果解释为目标物种可能存在的迹象。
摘要 . 淡水小龙虾 (Cherax quadricarinatus von Martens, 1868) 也称为红螯虾,是一种淡水龙虾 (甲壳类动物),具有开发为消费商品的潜力。龙虾养殖的发展可以采用集约化系统进行。幼体生产是生产食用规格龙虾的重要关键之一。幼体阶段的生产力必须由生长和存活来支持。适当的饲料是影响幼体生长和存活的重要关键之一。必须以全面的方式传达有关幼体所需营养的信息,以便对龙虾养殖发展工作有用。这篇评论文章旨在阐述幼体红螯虾的营养需求及其代谢作用。该评论通过研究印度尼西亚国内和国际上的各种文章进行,这些文章讨论了与红螯虾相关的主题,例如天然食物和饲料营养在幼体生长中的作用。综述结果表明,红螯螯虾养殖的重要问题之一是幼虾的生长和存活。幼虾表现出非选择性摄食行为,但存在个体发育过程中的饮食变化。红螯螯虾摄食习性特点是外源摄食,一般以腐烂的动植物、大型无脊椎动物、碎屑、大型植物和鱼类为食。红螯螯虾幼虾表现出滤食和刮食行为,属于非选择性摄食者。在养殖环境中,一些研究表明红螯螯虾幼虾以 Alona sp.、Daphnia sp.、Artemia sp.、红虫、蚕以及一些与其他有机物的组合(如米粉、胡萝卜、金螺、蚯蚓和凤尾鱼)为食。营养成分与摄食习性、个体发育过程中的饮食变化及其酶代谢之间存在一定的关系。幼年红螯虾需要的蛋白质多于碳水化合物和脂质,尽管维生素和矿物质的整体营养摄入对生长和生存很重要。关键词:摄食习性、生产力、蛋白质、个体发育。引言。淡水龙虾是具有养殖和商业发展潜力的小龙虾 (甲壳类动物) 之一。广泛养殖的小龙虾品种之一是红螯虾 (Cherax quadricarinatus von Martens, 1868),它是澳大利亚北部和巴布亚新几内亚东南部的本土品种 (Lawrence & Jones 2002;Snovsky & Galil 2011;Partini 等人 2019;Akmal 等人 2021;Faiz 等人 2021)。