以及信息科学与应用国际会议 (ICISA) ⋅ 工程学院模拟与混合信号设计与测试中心委员会成员 ⋅ IEEE 微波理论与技术学报、IEEE 电子器件学报和 IEEE 固态电路杂志的技术审稿人 精选出版物 ⋅ S. Hamedi-Hagh、MY Siddiqui、M. Singh 和 S. Ardalan,“具有恒定回波损耗的低压数字控制 4GHz 可变增益放大器,”微电子选定领域杂志,2012 年。 ⋅ S. Hamedi-Hagh 和 D.-H. Park,“纳米线晶体管在驱动纳米线 LED 中的应用,”电气电子材料学报,第 13 卷,第 2 期,第 73-77 页,2012 年。 ⋅ S. Hamedi-Hagh、M. Tabesh、S. Oh、NJ Park 和 D.-H. Park,“用于近场通信的 UHF CMOS 前端设计”,电气工程与技术杂志,KIEE,第 6 卷,第 6 期,第 817-823 页,2011 年。⋅ Bindal, D. Wickramaratne 和 S. Hamedi-Hagh,“利用硅纳米线技术实现直接序列扩频基带发射器”,纳米电子学和光电子学杂志,第 5 卷,第 1 期,第 1-12 页,2010 年。⋅ Bindal, T. Ogura、N. Ogura 和 S. Hamedi-Hagh,“用于实现带扫描链的现场可编程门阵列架构的硅纳米线晶体管”,纳米电子学和光电子学杂志,第 5 卷,第 1 期,第 1-12 页,2010 年。 4,第 342-352 页,2009 年。⋅ S. Hamedi-Hagh、JC Chung、S. Oh、NJ Park 和 DH Park,“用于 GPS 通信系统的高性能贴片天线的设计”,电气工程与技术杂志,KIEE,第 342-352 卷。 4,第 2 期,282-286 页,2009 年。⋅ S. Hamedi-Hagh 和 A. Bindal,“下一代纳米线放大器的设计和特性”,《VLSI 设计杂志》,文章 ID 190315,2008 年。⋅ JC Chung 和 S. Hamedi-Hagh,“单芯片通信系统的 PCB 匹配电感器和天线的设计”,《国际微波科学与技术杂志》,文章 ID 287627,2008 年。⋅ Hamedi-Hagh 和 A. Bindal,“使用完全耗尽周围栅极晶体管的纳米线 CMOS 放大器的特性”,《纳米电子学与光电子学杂志》,第 4 卷,第 2 期,第 282-286 页,2009 年。 ⋅ S. Hamedi-Hagh、S. Oh、A. Bindal 和 DH Park,“使用纳米线 FET 设计下一代放大器”,电气工程与技术杂志,KIEE,第 3 卷,第 4 期,第 566-570 页,2008 年。⋅ S. Hamedi-Hagh 和 A. Bindal,“用于高速模拟集成电路的硅纳米线场效应晶体管的 SPICE 建模”,IEEE Transactions on Sotoudeh Hamedi-Hagh 第 3/6 页纳米技术,第 7 卷,第 766-775 页,2008 年。⋅ Bindal、S. Hamedi-Hagh 和 T. Ogura,“用于现场可编程门阵列架构应用的硅纳米线技术”,纳米电子学与光电子学杂志,第 3 卷,第 4 期,第 566-570 页,2008 年。 3,第 2 期,第 1-9 页,2008 年。 ⋅ Bindal 和 S. Hamedi-Hagh,“硅纳米线晶体管及其在未来 VLSI 中的应用:16×16 SRAM 的探索性设计研究”,纳米电子学和光电子学杂志,第 2 卷,第 294-303 页,2007 年。⋅ Bindal、A. Naresh、P. Yuan、KK Nguyen 和 S. Hamedi-Hagh,“利用硅纳米线技术设计双功函数 CMOS 晶体管和电路”,IEEE 纳米技术学报,第 6 卷,第 291-302 页,2007 年。⋅ Bindal 和 S. Hamedi-Hagh,“利用硅纳米线技术设计新型脉冲神经元”,纳米技术杂志(物理研究所),第 2 卷,第 301-302 页,2007 年。 18,第 1-12 页,2007 年。⋅ Bindal 和 S. Hamedi-Hagh,“关于节能硅纳米线动态 NMOSFET/PMESFET 逻辑的探索性研究”,IEE 科学、测量和技术会议录,第 1 卷,第 121-130 页,2007 年。⋅ Bindal 和 S. Hamedi-Hagh,“使用硅纳米线技术实现交叉开关架构的静态 NMOS 电路”,半导体、科学和技术杂志(物理研究所),第 22 卷,第 54-64 页,2007 年。⋅ Bindal 和 S. Hamedi-Hagh,“硅纳米线技术对单功函数 CMOS 晶体管和电路设计的影响”,纳米技术杂志(物理研究所),第 17 卷,第 4340-4351 页,2006 年。
邮票收集具有其享受,包括有关主题,印刷量,颜色以及寻找新事物的快感的研究。尽管遇到邮票看起来相同但实际上具有影响该价值的微妙差异时,您的大脑会陷入混乱的时刻,尽管您的大脑陷入困境。这些差异不再可能是鼻子或唇上的添加点 - 如toga绳索或按钮上的重新划分线,数字上的阴影差异。需要一个好的放大镜和很多耐心!图为两组邮票,每组看起来相同,但每组不同:设置248-252:248 I型,粉红色,值32.50。249 I型,胭脂红,值175.00 250 I型,胭脂红,值29.00 251 II型,胭脂红,值400.00 252 III型,胭脂红,值135。集526-528:526 IV型,胭脂红,值26.00 527类型V,Carmine,值18.00 528 VA型VA,Carmine,Value 10.00 528A VI类型VI,Carmine,Value 47.50 528B型VII,Carmine,Carmine,Carmine,值20.00
一般描述 串行电气接口遵循行业标准串行外设接口 (SPI),在必须将引脚数保持在最低限度的系统中提供经济高效的非易失性存储器存储解决方案。该设备是基于标准并行 NAND 闪存的 1Gb SLC SPI-NAND 闪存设备,但为 SPI 操作定义了新的命令协议和寄存器。它也是 SPI-NOR 的替代品,与 SPI-NOR 相比,具有更出色的写入性能和每位成本。命令集类似于通用 SPI-NOR 命令集,经过修改以处理 NAND 特定的功能和新功能。新功能包括用户可选择的内部 ECC。启用内部 ECC 后,当将页面写入内存阵列时,会在内部生成 ECC 代码。ECC 代码存储在每个页面的备用区域中。当将页面读入缓存寄存器时,将再次计算 ECC 代码并将其与存储的值进行比较。如有必要,将纠正错误。该设备输出更正后的数据或返回 ECC 错误状态。
[1] Y. Tokusashi,H。T. Dang,F。Pedone,R.Soulé和N.[2] Z. Xu,T。Zhou,M。Ma,C。Deng,Q。Dai和L. Fang,“大规模光子chiplet Taichi Taichi 160 Tops/w人工通用情报”,《科学》,第1卷。384,否。6692,pp。202–209,2024。
一般说明串行电气接口遵循行业标准的串行外围界面(SPI),在系统中提供了具有成本效益的非挥发存储器存储解决方案,在该系统中,必须将PIN计数保持在最低限度。该设备是基于标准并行NAND Flash的1GB SLC SPI-NAND闪存设备,但是为SPI操作定义了新的命令协议和寄存器。它也是Spi-nor的替代方法,提供了出色的写作表现,并且每位比Spi-Nor提供了成本。命令集类似于常见的spi-nor命令集,已修改以处理NAND特定功能和新功能。新功能包括可选择用户的内部ECC。启用了内部ECC,当页面写入内存数组时,内部生成了ECC代码。ECC代码存储在每个页面的备用区域中。当将页面读取到高速缓存寄存器时,将再次计算ECC代码并将其与存储值进行比较。必要时会纠正错误。该设备要么输出校正数据或返回ECC错误状态。
字节。I/O 引脚用作地址和命令输入以及数据输入/输出的端口。复制回功能允许优化缺陷块管理:当页面编程操作失败时,可以直接在同一阵列部分内的另一页中对数据进行编程,而无需耗时的串行数据插入阶段。缓存编程功能允许在将数据寄存器复制到闪存阵列时将数据插入缓存寄存器。当在内存中写入长文件时,此流水线编程操作可提高程序吞吐量。还实现了缓存读取功能。当必须将连续页面流出时,此功能可以显著提高读取吞吐量。此设备包括额外功能:开机时自动读取。
第一阶段还重新启动了注水计划和基础设施升级。作为第一阶段的一部分,注水计划于去年 9 月在油田北部重新启动,油藏压力已恢复到关井前的水平。注水计划重新启动的全部效益通常在持续注水约六个月后显现,本月重新启动了三口之前关井的油井,预计2025 年第一季度的产量将进一步增加 15-30 桶/天。第一阶段的工作计划还升级了租赁道路、电力供应和油井通道,这使得低风险的第二阶段修井计划能够立即启动。旨在进一步提高产量的第二阶段修井计划已经开始。Nostra Terra 于 11 月从投资者那里筹集了 50 万英镑,以加速 Pine Mills 修井计划的第二阶段,该计划于 12 月底启动,使用与第一阶段相同的钻井团队,并且已经使第一口井恢复生产。作为修井计划的一部分,钻机已移至第二口井位置,该计划的目标是 Pine Mills 油田现有油井中未完工的含油储层区。预计 2025 年初的修井将使产量达到第一阶段修井计划的两倍,目标是通过重新启用油田的五口闲置油井,使总产量增加 54 桶/天。