摘要 酵母是黄曲霉的潜在生物防治剂,黄曲霉是一种产生黄曲霉毒素的真菌,存在于肉豆蔻等多种农产品中。本研究旨在从肉豆蔻(种子、果肉和叶子)中获取酵母分离株,对其进行特性分析,并确定其对黄曲霉的拮抗作用。通过双培养法测定了对黄曲霉的拮抗活性。此外,还分析了这些拮抗作用的可能机制。结果表明,从肉豆蔻中成功分离出 51 株酵母分离株。抑制百分比分别为 47.25 ± 1.66%(分离株 DP 1341a)和 55.98 ± 1.31%(分离株 DP 1342),具有统计学意义(p < 0.05)。 DP 1341a分离株的拮抗机制与挥发性有机化合物的产生(32.79±1.01%)、几丁质分解指数(2.51±0.55)和重寄生有关,但与毒素活性无关。此外,DP 1342分离株产生挥发性有机化合物(54.33±3.13%),表现出毒素活性(2.74±0.22)并表现出重寄生,但没有表现出几丁质酶活性。分子鉴定表明,两株酵母分离株(DP 1341a和DP 1342)被鉴定为Pseudozyma hubeiensis,序列相似性> 99%。因此,所选酵母分离株P. hubeiensis DP 1341a和DP 1342可进一步开发为A. flavus的生物防治剂。这一发现也将有助于改进生物防治剂,使其成为一种环保且经济可行的疾病管理策略。关键词:拮抗剂:黄曲霉;肉豆蔻;湖北假酵母;酵母
摘要简介:环皮二苯甲酸(CPA)是一种由各种真菌物种产生的霉菌毒素,例如曲霉(A. flavus)。这项研究旨在限制和控制烟草抗污染小麦粉的CPA产生水平。材料和方法:从埃及的各个位置收集小麦粉样品(35个样品)。确定并确定真菌污染。维持曲霉的纯菌落并测试了CPA的生产。不同的程序,例如紫外线处理,热处理,材料吸附和乳酸杆菌的生物吸附。用于控制和降低CPA水平。结果:在24个样本中,14个A.黄素分离株(58.33%)能够产生CPA。酵母蔗糖汤是CPA生产最有利的培养基,产生290.6 µg/100 mL干生物量。紫外线对不同暴露时间的CPA的合成产生了影响,暴露60分钟后降低了45.5%。CPA水平随温度和暴露时间的增加而降低,在100°C下最大减少了71.1%,持续30分钟。木炭是最有效的吸附材料,占CPA的53.3%。嗜酸乳杆菌(L. condophilus)是最有效的生物吸附剂,占CPA的96.0%以上。将嗜酸乳杆菌细胞的接种物增加5×107,将CPA水平降低了82.1%。结论:非生物和生物控制措施的多样性及其有效性可能为控制和降低CPA水平提供了新的希望。关键字:曲霉曲霉,环皮二唑酸,乳酸杆菌属,超紫罗兰色引用:Abdelsalam Ayad Ayad A,Fadelsalam Ayad A,Fadel Alsaffar M,Fadel Alsaffar M,Hamza Merza Z,Farouk Z,Farouk Ghaly M.曲霉中含有小麦粉的酸水平。J Appl Biotechnol Rep。 2024; 11(4):1439-1 doi:10.30491/jar.2024.478289.1784
结果:在本研究中,假单胞菌属,20EI1能够降低黄曲霉的生长。此外,我们确定这种生长抑制是铁的。此外,假单胞菌20EI1减少或阻断了黄曲霉毒素的产生,以及环皮二唑酸和曲酸。在细菌的存在下改变了铁相关基因的表达,而参与产生黄曲霉毒素的基因被下调。铁补充部分重新建立了它们的表达。细菌还降低了其他继发代谢产物(SM)基因的表达,包括参与环皮二唑酸,曲酸和imizoquin生物合成的簇的基因,而聚类的基因与曲霉菌素相对应。有趣的是,全局SM调节基因MTFA被20EI1显着上调,这可能有助于观察到的SM发生变化。
感染仍然是严重的性贫血(SAA)患者死亡率的主要原因,侵入性真菌感染是巨大的威胁。曲霉曲霉占大多数报告的真菌感染病例。在这里,尽管持续存在临床真菌测试,但我们介绍了急性严重性性贫血(VSAA)患者中明阿曲霉感染的病例。由于全年养分为一个月以上,并且间歇性发烧10天,该患者被送往医院。炎症指标升高和异常肺成像提示感染,促使人们考虑了真菌受累。尽管来自多种血液,痰液真菌培养和血清(1,3)-β-D-葡聚糖/半乳糖量测试的阴性。元基因组下一代测序(MNG)在多个血液样本上,以及临床症状,证实了葡萄链球菌感染。脂质体两性霉素B和伏立康唑的靶向抗真菌治疗显着改善了肺症状。此外,本研究还审查并比较了AA患者先前曲霉感染的症状,诊断方法和治疗方法。它强调了早期MNG使用在诊断和管理传染病中的关键作用,从而提供了诊断和治疗VSAA真菌感染的见解。
链霉菌Albidoflavus是一种流行且遗传上的平台菌株,用于通过异源生物合成基因簇(BGC)的表达进行自然产物发现和生产。然而,其转录调节网络(TRN)及其对继发代谢的影响尚不清楚。在这里,我们通过将独立的组件分析应用于来自内部和公共资源的218个高质量RNA-SEQ转录组的纲要,通过将独立的组件分析应用于88个独特的增长条件,来表征其TRN。我们获得了78个独立调制的基因集(imodulons),这些基因(imodulons)在定量地描述了跨不同条件的TRN及其活性状态。Through analyses of condition-dependent TRN activity states, we (i) describe how the TRN adapts to different growth conditions, (ii) conduct a cross-species iModulon comparison, uncovering shared features and unique characteristics of the TRN across lineages, (iii) detail the transcriptional activation of several endogenous BGCs, including surugamide, minimycin and paulomycin, and (iv) infer potential functions of 40% albidoflavus基因组中未表征的基因。我们的发现提供了对Albidoflavus的TRN的全面和定量的理解,为进一步的探索和实验验证提供了知识库。
伤口中的多药耐药(MDR)感染引起了重大关注。黄色有色的海洋细菌,菌株AK 11,是从珊瑚孔分离的。在Gosong Beach,Rembang,Central Java,印度尼西亚,并在实验室进行培养。这项研究旨在确定细菌共生体以及产生的色素类型,并确定黄色色素对引起伤口感染的细菌的抗菌效果。使用三种不同的方法进行提取过程,每种方法都以溶剂和蒸发过程进行区分。使用金黄色葡萄球菌,铜绿假单胞菌和大肠杆菌的测试细菌通过扩散法进行了抗菌活性测试。结果表明,最合适的色素提取方法是方法III,甲醇作为溶剂和使用N2的干燥技术。黄色色素提取物对金黄色葡萄球菌ATCC 6538和金黄色葡萄球菌菌株MDR的抗菌活性表现出抑制区直径为35±1.08和25±1.06mm。同时,铜绿假单胞菌和大肠杆菌细菌没有表现出任何抗菌活性。结果还揭示了细菌共生体是使用16S rRNA基因测序的微球菌,产生了类胡萝卜素的色素。总之,黄色颜料提取物具有抗菌的潜力,尤其是针对金黄色葡萄球菌。建议未来的研究继续专注于抗菌作用在体内的运作方式。
抽象的曲霉曲霉被认为是负责引起疾病并损害食物和饲料商品的真菌之一。这种真菌能够产生对人和动物都有有毒特性的霉菌毒素。A. flavus的污染跨越了广泛的范围,从田间种植开始,一直延伸到存储设施。一种管理这种真菌的替代方法涉及其增长环境的修改。微生物固有地具有最低水活性(W)对其代谢过程至关重要的价值。这项研究的目的是修改A W值以抑制A. flavus的生长。这项研究是使用补充甘油和蒸馏水的PDA培养基在体外进行的,以建立0.90、0.92、0.95和0.97的W条件。在孵化后的第七天,结果表明,对于0.90,a表现出对氟曲霉生长的显着抑制作用,平均菌落直径为1.34 mm,其次是0.92,然后0.92为1.54,然后0.95为1.83 mm,0.97为1.97 mm。相反,使用0.90的治疗显示最低的抑制作用(1.34 mm),0.97的抑制作用显示最高(1.84 mm)。所有改良的水活性处理都对黄曲霉的生长产生了影响。随着A W值的降低,A. flavus的生长变得越来越受到限制。关键字:曲曲霉,水活动(A W),菌落直径
这项研究涵盖了对曲木曲霉抗花生抗性的现有文献的评论,并探讨了操纵易感基因作为抗性繁殖策略的潜力。花生(Arachis hypogaea l。)在世界上最重要的油料种子作物中排名。然而,由真菌病原体曲霉素flavus引起的黄曲霉毒素污染严重阻碍了花生生产的盈利能力和安全性。为了解决这个问题,本文始于专门针对病原体的一章,涵盖了诸如A. flavus生命周期,致病性,影响其生长的因素和黄曲霉毒素污染的因素以及建议的控制策略。到目前为止,疾病管理和黄曲霉毒素控制的传统方法表现出有限的成功。它具有专门针对病原体基因组调节的部分,包括黄曲霉毒素生物合成的调节。
摘要:微生物技术在改进工业过程方面发挥着至关重要的作用,特别是在生产具有多种应用的化合物方面。在本研究中,我们使用生物信息学方法分析了链霉菌 MGMM6 的基因组结构,并确定了参与各种代谢途径的具有重大生物技术潜力的基因。基因组挖掘显示,MGMM6 由 6,932,303 bp 的线性染色体组成,G+C 含量高达 73.5%,缺乏任何质粒重叠群。在注释的基因中,预测有几个基因编码酶,例如染料过氧化物酶、芳香环开双加氧酶、多铜氧化酶、细胞色素 P450 单加氧酶和芳香环羟基化双加氧酶,这些酶负责生物降解多种内源性和外来污染物。此外,我们还鉴定了与重金属抗性相关的基因,例如砷、镉、汞、铬、碲、锑和铋,这表明 MGMM6 具有用于环境修复目的的潜力。对次生代谢物的分析表明,存在多个生物合成基因簇,这些基因簇负责产生具有强效抗菌和金属螯合活性的化合物。此外,在受控条件下进行的实验室测试表明,MGMM6 可有效抑制植物病原微生物,使废水中的芳香族三苯甲烷染料(尤其是 Blue Brilliant G250)脱色和降解,效果高达 98 ± 0.15%。总体而言,我们的研究结果凸显了 S. albidoflavus MGMM6 的生物技术潜力。
1 西班牙奥维耶多大学微生物学领域功能生物学系 BIONUC(营养保健品和生物活性化合物生物技术)研究组,奥维耶多 33006; magadanpatricia@uniovi.es (PM-C.); yesuhui@uniovi.es (SY); apv.moratalla@gmail.com(Á.P.-V.); mcalpineatsantaclara@gmail.com (PLM); uo269925@uniovi.es(PV-C.); cjvg@uniovi.es (CJV) 2 IUOPA(阿斯图里亚斯公国大学肿瘤研究所),33006 奥维耶多,西班牙 3 ISPA(阿斯图里亚斯公国健康研究所),33006 奥维耶多,西班牙 4 国家生物技术中心系统生物学系,CSIC,28049 马德里,西班牙; jtbace8@gmail.com(JT-B.); jnogales@cnb.csic.es (JN) 5 面向循环经济的可持续塑料跨学科平台-西班牙国家研究委员会(SusPlast-CSIC),28040 马德里,西班牙 * 通讯地址:lombofelipe@uniovi.es;电话:+34-985103593 † 这些作者对这项工作做出了同等贡献。
