1。Galicia-Garcia U,Benito-Vicente A,Jebari S,Larrea-Sebal A,Siddiqi H,Uribe KB等。2型糖尿病的病理生理学。国际分子科学杂志。2020; 21(17):6275。2。Firmin S,Bahi-Jaber N,Abdennebi-Najar L.食品污染物和2型糖尿病的编程:动物研究的最新发现。健康与疾病发育起源杂志。2016; 7(5):505-12。 3。 IQBAL SZ。 食品中的霉菌毒素,食品分析的最新发展以及未来的挑战;评论。 食品科学中的当前意见。 2021; 42:237-47。 4。 dai Y,Huang K,Zhang B,Zhu L,Xu W.黄曲霉毒素B1诱导的表观遗传改变:概述。 食物和化学毒理学。 2017; 109:683-9。 5。 Wang C,Li Y,Zhao Q. 基于与互补DNA的竞争,用于快速检测黄曲霉毒素B1的信号电化学适时性。 生物传感器和生物电子学。 2019; 144:111641。 6。 min L,Fink-Gremmels J,Li D,Tong X,Tang J,Nan X等。 哺乳奶牛中黄曲霉毒素B1生物转化和黄曲霉毒素M1分泌的概述。 动物营养。 2021; 7(1):42-8。 7。 fouad AM,Ruan D,El-Senousey HK,Chen W,Jiang S,ZhengC。曲霉素B的有害效果和控制策略由Aspergillus flavus和parassiticus菌株在家禽上产生:审查。 毒素(巴塞尔)。 2019; 11(3)。 8。 危险材料杂志。2016; 7(5):505-12。3。IQBAL SZ。 食品中的霉菌毒素,食品分析的最新发展以及未来的挑战;评论。 食品科学中的当前意见。 2021; 42:237-47。 4。 dai Y,Huang K,Zhang B,Zhu L,Xu W.黄曲霉毒素B1诱导的表观遗传改变:概述。 食物和化学毒理学。 2017; 109:683-9。 5。 Wang C,Li Y,Zhao Q. 基于与互补DNA的竞争,用于快速检测黄曲霉毒素B1的信号电化学适时性。 生物传感器和生物电子学。 2019; 144:111641。 6。 min L,Fink-Gremmels J,Li D,Tong X,Tang J,Nan X等。 哺乳奶牛中黄曲霉毒素B1生物转化和黄曲霉毒素M1分泌的概述。 动物营养。 2021; 7(1):42-8。 7。 fouad AM,Ruan D,El-Senousey HK,Chen W,Jiang S,ZhengC。曲霉素B的有害效果和控制策略由Aspergillus flavus和parassiticus菌株在家禽上产生:审查。 毒素(巴塞尔)。 2019; 11(3)。 8。 危险材料杂志。IQBAL SZ。食品中的霉菌毒素,食品分析的最新发展以及未来的挑战;评论。食品科学中的当前意见。2021; 42:237-47。4。dai Y,Huang K,Zhang B,Zhu L,Xu W.黄曲霉毒素B1诱导的表观遗传改变:概述。食物和化学毒理学。2017; 109:683-9。 5。 Wang C,Li Y,Zhao Q. 基于与互补DNA的竞争,用于快速检测黄曲霉毒素B1的信号电化学适时性。 生物传感器和生物电子学。 2019; 144:111641。 6。 min L,Fink-Gremmels J,Li D,Tong X,Tang J,Nan X等。 哺乳奶牛中黄曲霉毒素B1生物转化和黄曲霉毒素M1分泌的概述。 动物营养。 2021; 7(1):42-8。 7。 fouad AM,Ruan D,El-Senousey HK,Chen W,Jiang S,ZhengC。曲霉素B的有害效果和控制策略由Aspergillus flavus和parassiticus菌株在家禽上产生:审查。 毒素(巴塞尔)。 2019; 11(3)。 8。 危险材料杂志。2017; 109:683-9。5。Wang C,Li Y,Zhao Q. 基于与互补DNA的竞争,用于快速检测黄曲霉毒素B1的信号电化学适时性。 生物传感器和生物电子学。 2019; 144:111641。 6。 min L,Fink-Gremmels J,Li D,Tong X,Tang J,Nan X等。 哺乳奶牛中黄曲霉毒素B1生物转化和黄曲霉毒素M1分泌的概述。 动物营养。 2021; 7(1):42-8。 7。 fouad AM,Ruan D,El-Senousey HK,Chen W,Jiang S,ZhengC。曲霉素B的有害效果和控制策略由Aspergillus flavus和parassiticus菌株在家禽上产生:审查。 毒素(巴塞尔)。 2019; 11(3)。 8。 危险材料杂志。Wang C,Li Y,Zhao Q.基于与互补DNA的竞争,用于快速检测黄曲霉毒素B1的信号电化学适时性。生物传感器和生物电子学。2019; 144:111641。6。min L,Fink-Gremmels J,Li D,Tong X,Tang J,Nan X等。哺乳奶牛中黄曲霉毒素B1生物转化和黄曲霉毒素M1分泌的概述。动物营养。2021; 7(1):42-8。7。fouad AM,Ruan D,El-Senousey HK,Chen W,Jiang S,ZhengC。曲霉素B的有害效果和控制策略由Aspergillus flavus和parassiticus菌株在家禽上产生:审查。毒素(巴塞尔)。2019; 11(3)。 8。 危险材料杂志。2019; 11(3)。8。危险材料杂志。Park S,Lee J-Y,You S,Song G,Lim W.黄曲霉毒素B1在体外对人类星形胶质细胞的神经毒性作用和体内斑马鱼的神经胶质细胞发育。2020; 386:121639。9。Kadhum GM,Al_jumaili SA,Al_hashemi Ha。研究黄曲霉毒素B1在糖尿病2型患者血液中的研究。艾滋病毒护理。2022; 22(2):3632–4- – 4。10。Abd al-Redha S,Falah Z,Ahmed F,Falah G,Hasson A.对血液中的尾毒素A及其与癌症疾病的关系进行了研究。2017。11。Abdullah Har,Aljumaili Sar。调查卡尔巴拉省人血液中patulin的调查。2018。12。Singhal SS,Saxena M,Awasthi S,Ahmad H,Sharma R,Awasthi YC。性别相关的人类结肠谷胱甘肽S-转移酶的表达和特征的差异。Biochimica et Biophysica Acta(BBA) - 晶状结构和表达。1992; 1171(1):19-26。 13。 Lalah Jo,Omwoma S,Orony D.黄曲霉毒素B1:肯尼亚人类的化学,环境和饮食来源以及潜在的暴露。 黄曲霉毒素B1的发生,检测和毒理学作用。 2019。1992; 1171(1):19-26。13。Lalah Jo,Omwoma S,Orony D.黄曲霉毒素B1:肯尼亚人类的化学,环境和饮食来源以及潜在的暴露。黄曲霉毒素B1的发生,检测和毒理学作用。2019。
黄曲霉毒素是食品工业主要关注的有毒代谢产物,通常由曲霉菌,寄生虫和A. nomius产生。他们可以具有免疫抑制,诱变,致去性和致癌作用。黄曲霉毒素(AF)可以存在于与人类食品或动物饲料相关的谷物,香料,谷物和其他商品中。农作物可能被黄曲霉毒素污染。AFB1是最毒性和经常检测到的形式。其他类型(B2,G1和G2)如果浓度在高水平的情况下会带来重大危险。动物通过食用具有真菌菌株在生长,收获或储存过程中产生黄曲霉毒素的饲料而暴露于Aflatox-Ins中。动物毒性的症状从死亡到慢性疾病,生殖干扰,免疫抑制,牛奶和卵产量减少。全世界大多数控制的政府机构都有有关人类和动物食品中允许的AF量的法规。准确,快速确定黄曲霉毒素在商品中的存在至关重要。
抽象的香蕉水果是全球数百万人的主食食物来源,这导致全球对水果的需求增加。然而,它们容易受到各种形式的恶化,这通常归因于微生物的活性,包括细菌,真菌和酵母菌,它们可能导致各种类型的变质,例如变色,纹理变化,口味,口味,等等,并可能导致救助后的损失。这项研究是为了隔离和鉴定与香蕉水果恶化有关的微生物。分别通过连续稀释,接种并分别在营养琼脂和Sabouraud右旋糖琼脂上培养了总共4个样品的真菌和细菌。将两个培养的板在37 0 C下孵育24小时和28±1°C,分别孵育五天,并分别培养。进行了真菌物种的宏观检查和微观检查,并通过与标准真菌鉴定指南进行了比较研究形态学特征并用于真菌鉴定。还进行了形态学检查,革兰事染色和生化测试以鉴定细菌。细菌计数范围为4.5 x 105至1.21 x 106 cfu/ml,表明被宠坏的样品中细菌种群较高。fusarium spp,Rhizopus spp和Candida spp是来自新鲜香蕉水果中最孤立的真菌,出现(2)25%,而曲霉和念珠菌SPP则最少孤立,出现(1)12.5%。分离株的存在可能是由于香蕉水果的粗心处理和储存条件所致烟曲霉,根茎spp,粘液spp和念珠菌spp是来自变质的香蕉水果中最孤立的真菌,出现(2)20%,而富沙属spp和spergillus flavus则是最少的,而呈(1)10%。金黄色葡萄球菌和链球菌是来自新鲜香蕉水果的最不分离的细菌,出现为(1)25%,而大肠杆菌的发生最分离的是(2)50%。金黄色葡萄球菌和链球菌是从变质的香蕉果实中分离出的细菌,出现为(1)25%,而大肠杆菌的发生最多的是(2)50%。
由于尿酸酶基因的进化突变,尿酸酶存在于细菌、真菌、酵母、植物和除人类以外的哺乳动物中 [6]。这种酶主要位于肝脏中,四聚体与分子量为 32-33 kDa 的亚基的过氧化物酶体结合 [7]。尿酸酶负责肝细胞过氧化物酶体中晶体核心的形成 [8]。尿酸酶因治疗痛风性关节炎而广为人知,痛风性关节炎是一种常见的炎性关节炎。体液中尿酸浓度升高(儿童 3.6 mg dl -1,男性 > 7 mg dl -1,女性 6 mg dl -1)会导致一种称为高尿酸血症的疾病,其中血液中尿酸钠晶体的积聚会导致关节内和关节周围疼痛和炎症 [9]。人类痛风的原因之一是缺乏尿酸酶 [10]。尿酸酶的使用会导致血浆尿酸水平下降,这是治疗高尿酸血症和痛风的替代方法。最初,来自黄曲霉的天然尿酸酶被用于治疗高尿酸血症、痛风、预防和肿瘤
黄曲霉毒素是食品工业主要关注的有毒代谢产物,通常由曲霉菌,寄生虫和A. nomius产生。他们可以具有免疫抑制,诱变,致去性和致癌作用。黄曲霉毒素可以存在于与人类食物或动物饲料相关的谷物,香料,谷物和其他商品中。农作物可能被黄曲霉毒素污染。AFB1是最毒性和经常检测到的形式。其他类型(B2,G1和G2)如果浓度在高水平的情况下会带来重大危险。动物通过食用具有真菌菌株在生长,收获或储存过程中产生黄曲霉毒素的饲料而暴露于Aflatox-Ins中。动物毒性的症状从死亡到慢性疾病,生殖干扰,免疫抑制,牛奶和卵产量减少。全世界大多数控制的政府机构都有有关人类和动物食品中允许的黄曲霉毒素数量的法规。准确,快速确定黄曲霉毒素在商品中的存在至关重要。
测试的代表性微生物:(部分概要)HyGenesis 系统:细菌 醋酸钙不动杆菌 1 真菌 黑曲霉 基于独特的抗菌技术,可有效控制各种处理物品和基质上的细菌、真菌、藻类 枯草芽孢杆菌 烟曲霉 和酵母。抗菌活性物质是在美国环境保护局和全球类似监管机构注册的猪布鲁氏菌 杂色曲霉 布鲁氏菌 出芽短梗霉 伯克霍尔德菌 洋葱毛壳菌。这种抗菌剂已安全有效地使用了三十多年。产气荚膜梭菌 镰刀菌 鲍氏棒状杆菌 粉红粘帚菌 本表是应众多要求编制的,要求提供该技术有效的微生物清单。我们选择了大肠杆菌 ATCC 23266 白色青霉菌,以提供测试谱,其中大肠杆菌 1 黄青霉菌 代表所有重要类型和猪嗜血杆菌 柑橘青霉菌 微生物种类。流感嗜血杆菌 秀丽隐杆线虫 肺炎克雷伯菌 ATCC 4352 绳状青霉 干酪乳杆菌 腐殖质青霉 乳酸明串珠菌 青霉菌 单核细胞增多性李斯特菌 变异青霉 耐甲氧西林葡萄球菌 金黄色葡萄球菌 黑根霉 微球菌 sp. Stachybotrys atra 耻垢分枝杆菌 黄木霉 结核分枝杆菌 趾间毛癣菌 痤疮丙酸杆菌 须毛癣菌 奇异变形杆菌 藻类 奇异变形杆菌1 鱼腥藻 B-1446-1C 普通变形杆菌 小球藻 铜绿假单胞菌 Gium sp. LB 9c 铜绿假单胞菌 PRD-10 波恩颤菌 LB143 铜绿假单胞菌 1 胸膜球菌属 LB11 洋葱假单胞菌 四尾假单胞菌 细长月牙藻 B-325 猪霍乱沙门氏菌 团藻属 LB 9 伤寒沙门氏菌 酵母菌 金黄色葡萄球菌(无色素)1 白色念珠菌 金黄色葡萄球菌(有色素)1 酿酒酵母 表皮葡萄球菌 1 病毒 粪链球菌 禽流感 变形链球菌 HIV B 万古霉素耐药肠球菌 (VRE) 甲型流感 野油菜黄单胞菌 SARS
摘要:生物防治是一种控制害虫的技术,无论是使用其他生物体使用其他生物体,昆虫和螨虫,杂草,杂草还是影响动物或植物的病原体。因此,本文的目的是使用标准的微生物学方法研究了从尼日利亚的河流和阿比亚州收集的trichoderma harzianum trichoderma harzianum的可可糖(Colocasia esculenta)腐败真菌的目的。获得的结果表明,分离的真菌是曲霉,尼日尔曲霉,粘液sp和penicillium and trichorderma sp。拮抗真菌被分子鉴定为trichoderma harzianum菌株A0H287。生物拮抗剂T. harzianum的抑制作用表明,它使尼日尔的生长降低了50%,粘液sp降低了34.1%,青霉sp降低了70%,而弗拉夫斯则降低了63.7%。研究表明,生物拮抗剂trichoderma在减少大多数致病真菌的生长方面表现出有效性,因此可以建议作为化学杀菌剂的替代品。doi:https://dx.doi.org/10.4314/jasem.v28i3.10 Open Access策略:Jasem发表的所有文章都是Open-Access文章,并且可以免费下载,复制,复制,重新分发,重新分发,重新分发,翻译和阅读。版权策略:©2024。作者保留了版权和授予JASEM的首次出版物的权利,同时在创意共享署名4.0 International(CC-By-4.0)许可下获得许可。,只要引用了原始文章,就可以在未经许可的情况下重复使用本文的任何部分。将本文列为:Akomah-Abadaike,O。N; Didia,H。E.(2024)。 J. Appl。将本文列为:Akomah-Abadaike,O。N; Didia,H。E.(2024)。J. Appl。从尼日利亚河流和阿比亚州收集的Trichoderma harzianum的Cocoyam(Colocasia esculenta)变质真菌。SCI。 环境。 管理。 28(3)699-706日期:收到:2024年1月18日;修订:2024年2月24日;接受:2024年3月12日发表:2024年3月29日关键字:Trichoderma Harzianum,Cocoyam,Cocoyam,抑制作用,Penicillium SP,Biocontrol Cocoyam是一种多年生的单子叶植物和家族的草本植物。 这是非洲,亚洲和太平洋的许多发展中国家的重要主食。 这是世界上最古老的粮食作物之一,据信是在最终传播到世界其他地区之前在东南亚首次被驯化的。 最常见的两个物种是共老见esculenta(红色类型或芋头)和叶thosoma sagittifolium(白色类型或tannia)。 在尼日利亚,Cocoyam主要用于可食用的Corms,作为补充山药和木薯的碳水化合物的来源以及用于药用目的(Bartholomew等,2017)。 Cocoyam被认为主要由低收入者和经济脆弱的群体消耗。 尼日利亚目前是世界领先SCI。环境。管理。28(3)699-706日期:收到:2024年1月18日;修订:2024年2月24日;接受:2024年3月12日发表:2024年3月29日关键字:Trichoderma Harzianum,Cocoyam,Cocoyam,抑制作用,Penicillium SP,Biocontrol Cocoyam是一种多年生的单子叶植物和家族的草本植物。 这是非洲,亚洲和太平洋的许多发展中国家的重要主食。 这是世界上最古老的粮食作物之一,据信是在最终传播到世界其他地区之前在东南亚首次被驯化的。 最常见的两个物种是共老见esculenta(红色类型或芋头)和叶thosoma sagittifolium(白色类型或tannia)。 在尼日利亚,Cocoyam主要用于可食用的Corms,作为补充山药和木薯的碳水化合物的来源以及用于药用目的(Bartholomew等,2017)。 Cocoyam被认为主要由低收入者和经济脆弱的群体消耗。 尼日利亚目前是世界领先28(3)699-706日期:收到:2024年1月18日;修订:2024年2月24日;接受:2024年3月12日发表:2024年3月29日关键字:Trichoderma Harzianum,Cocoyam,Cocoyam,抑制作用,Penicillium SP,Biocontrol Cocoyam是一种多年生的单子叶植物和家族的草本植物。这是非洲,亚洲和太平洋的许多发展中国家的重要主食。这是世界上最古老的粮食作物之一,据信是在最终传播到世界其他地区之前在东南亚首次被驯化的。最常见的两个物种是共老见esculenta(红色类型或芋头)和叶thosoma sagittifolium(白色类型或tannia)。在尼日利亚,Cocoyam主要用于可食用的Corms,作为补充山药和木薯的碳水化合物的来源以及用于药用目的(Bartholomew等,2017)。Cocoyam被认为主要由低收入者和经济脆弱的群体消耗。尼日利亚目前是世界领先
这项研究研究了200 ppm次氯酸酸(HOCL)溶液(I-lid'n Lash Hocl清洁喷雾剂)的体外抗菌功效,靶向与眼部感染和干眼症相关的微生物。使用菌落形成单元(CFU)和噬菌体菌斑还原生物测定,研究评估了不同HOCL浓度对金黄色葡萄球菌,葡萄球菌表皮,铜绿假单胞菌的影响结果表明,200 ppm HOCL溶液可实现显着的微生物还原,细菌CFU在10秒内降低了99.9%,真菌和病毒载荷相似。稀释的溶液(25-150 ppm)也表现出有效的微生物减少,从而支持该产品在其保质期内的持续功效。元素和有机成分分析证实了该产品的纯度,对于保持HOCL稳定性,有效性和安全性至关重要。这些发现突出了HOCL作为眼卫生的强大防腐剂的潜力,强调了其通过减轻微生物和/或病毒存在以及导致的炎症来强调其在管理干眼症中的作用。还需要进一步的体内研究来确认这些体外结果。
真菌越来越牵涉到经济上重要的水果和蔬菜变质的药物。这项研究的目的是确定负责卷心菜(甘蓝橄榄石)和凹槽南瓜(Telfairia occidentalis)叶片的真菌物种,在尼日利亚港口哈科特港的不同市场中出售。总共分析了50个样品,分析了肉体和南瓜的肉体学,近端和矿物质成分。分别从白菜和南瓜获得了总共170和128个真菌分离株。被宠坏的卷心菜样品的真菌计数范围从5.1×10 5 cfu/g到7.2×10 6 cfu/g/g,来自Rumuokoro和Mile 1市场的样品分别具有最高和最低计数。南瓜的真菌计数范围从2.8×10 4 cfu/g到2.4×10 5 cfu/g,rumuokoro和d/line市场分别产生最高和最低计数。所鉴定的真菌是青霉,尼日尔曲霉,cladosporium sp。,Rhizopus sp。,Aspergillus flavus,fusarium sp。,Trichophyton sp。和Saccharomyces sp。aspergillus sp。的患病率最高(88%),其次是Saccharomyces sp。(84%),penicillium sp。(44%)和根茎sp。(44%)。蔬菜中含有大量的粗蛋白和碳水化合物,而脂肪含量则低。蔬菜富含Na,Mg,Ca,K,Cu和Zn。这项研究表明,隔离的真菌与卷心菜和南瓜叶的变质有关,可以追溯到糟糕的处理和出售市场的卫生状况。
霉菌毒素是真菌的有害毒性代谢产物,以污染物形式存在于许多食品、乳制品和农产品中,对健康构成潜在危害。因此,降低其生物利用度的新型净化方法对提高人类安全具有重要意义。近年来,已经开发出生物方法来控制霉菌毒素污染。利用微生物降解霉菌毒素(尤其是黄曲霉毒素 (AF),由曲霉属物种产生,主要是寄生黄曲霉、黄曲霉和黄曲霉)是一种重要的生物基方法,可降低食品中的霉菌毒素含量,且不会产生有害中间体和副产物。许多研究报告称,解毒是通过将霉菌毒素与微生物的细胞壁结构结合而发生的。解毒过程涉及多种因素,包括微生物菌株、毒素类型、微生物浓度、微生物活力和接触时间。本综述主要讨论了益生菌对霉菌毒素进行生物净化的现有文献,描述了此类过程中涉及的解毒机制以及影响相互作用稳定性的因素。还报告了该领域的未来前景。根据目前的数据,人们应该能够选择最有效的微生物来降解浓度范围广泛的霉菌毒素。