。CC-BY 4.0国际许可证。是根据作者/资助者提供的预印本(未经同行评审认证)提供的,他已授予Biorxiv的许可证,以在2025年1月18日发布的此版本中显示此版本的版权持有人。 https://doi.org/10.1101/2025.01.17.632662 doi:biorxiv preprint
抽象引入呼吸挥发性有机化合物(VOC)由于其独特的特性而成为临床目的的有希望的生物标志物。将VOC生物标志物转换为诊所的翻译取决于识别和验证:需要协作,建立良好协议和数据交叉比较的挑战。以前,我们开发了一种呼吸收集和分析方法,从而确定了148种呼吸传播VOC。目的是开发一种互补分析方法,以检测和鉴定呼吸中的其他VOC。通过将呼吸样品与应用三个指标的配对背景样本进行比较:标准偏差,配对的t检验和接收器操作 - 特征(ROC)曲线,通过比较呼吸样本与配对背景样本进行比较,以开发和实施升级,以识别确定为“呼吸”的特征。方法开发了利用PEG相GC柱的基于PEG相位GC柱的基于生物学相关的VOC的基于PEG相位GC柱的热解(GC) - 质谱法(MS)质谱法(MS)的分析方法。通过多个发展升级了多步VOC识别方法:候选VOC分组,基于离子丰度相关的基于光谱库的创建方法,混合烷烃 - fames保留索引,相对保留时间匹配以及其他质量检查。结合使用,这些更新可以在光谱和保留轴上高度准确地识别呼吸传播VOC。结果,总共有621个特征在呼吸上被统计确定为至少一个度量(标准偏差,配对t检验或ROC)。结论总共确认的呼吸voc现在是186。从与化学标准的比较中可以确定,总共有38次呼吸ov。我们提出了一种更新的方法,用于高信VOC识别,以及一组新的VOC,通常在呼吸上发现。
Adamson, PT、Rutherfurd, ID、Peel, MC、Conlan, IA,2009 年。湄公河的水文学。引自:Cambell, I.(编辑),湄公河:国际河流流域的生物物理环境,第一版。Elsevier,第 53 – 76 页。Alcayaga, H.、Belleudy, P.、Jourdain, C.,2012 年。流域尺度上水电结构对河流扰动的形态学建模。引自:Mu ˜ noz, RM(编辑),河流流量 2012。河流水力学国际会议,第 537 – 544 页。 Arias, ME、Cochrane, TA、Kummu, M.、Lauri, H.、Holtgrieve, GW、Koponen, J.、Piman, T.,2014。水电和气候变化对东南亚最重要湿地生态生产力驱动因素的影响。生态模型 272,252 – 263。Ashouri, H.、Hsu, K.、Sorooshian, S.、Braithwaite, DK、Knapp, KR、Cecil, LD、Nelson, BR、Prat, OP,2015。PERSIANN-CDR:来自多卫星观测的每日降水气候数据记录,用于水文和气候研究。美国流星学会通报 96(1),69 – 83。 Ayugi, B., Tan, G., Gnitou, GT, Ojara, M., Ongoma, V., 2020. 罗斯贝中心区域气候模型对东非降水的历史评估和模拟。大气研究 232, 104705 。Bao, Z., Zhang, J., Wang, G., Fu, G., He, R., Yan, X., Jin, J., Liu, Y., Zhang, A., 2012. 中国北方海河流域径流量减少的归因:气候变化还是人类活动?水文地质学杂志 460 – 461, 117 – 129 。Bartkes, M., Brunner, G., Fleming, M., Faber, B., Slaughter, J., 2016. HEC-SSP 统计软件包用户手册 2.1 版。美国陆军工程兵团。Binh, DV、Kantoush, S.、Sumi, T.、Mai, NP,2018a。澜沧江梯级大坝对越南湄公河三角洲流态的影响。J. Jpn. Soc. Civ. Eng. Ser. B1 74 (4), 487 – 492。Binh, DV、Kantoush, S.、Mai, NP、Sumi, T.,2018b。越南湄公河三角洲在增加管制流量和河流退化的情况下的水位变化。J. Jpn. Soc. Civ. Eng. Ser. B1 74 (5), 871 – 876。Binh, DV、Kantoush, S.、Sumi, T.、Mai, NP,2019。湄公河流域的长期排放、水位、盐度浓度和降水。 Mendeley Data V3 。Binh, DV、Kantoush, S.、Sumi, T.,2020. 上游水坝导致越南湄公河三角洲长期排放和沉积物负荷的变化。地貌学 353,107011。Cook, BI、Bell, AR、Anchukaitis, KJ、Buckley, BM,2012。积雪和降水对湄公河下游流域旱季径流的影响。地球物理研究杂志 117,D16116。Dang, TD、Cochrane, TA、Arias, ME、Van, PDT、Vries, TTD,2016。湄公河洪泛区水利基础设施建设带来的水文变化。水文过程 30,3824 – 3838。 Darby, SE、Hackney, CR、Leyland, J.、Kummu, M.、Lauri, H.、Parsons, DR、Best, JL、Nicholas, AP、Aalto, R.,2016 年。热带气旋活动变化导致巨型三角洲河流沉积物供应减少。《自然》276 – 279。Eslami, S.,Hoekstra, P., Trung, NN, Kantoush, SA, Binh, DV, Dung, DD, Quang, TT, Vegt, MVD,2019。人为沉积物匮乏导致湄公河三角洲的潮汐放大和盐入侵。Sci. Rep. 9,18746。Fan, H., He, D., Wang, H.,2015。筑坝澜沧江-湄公河主流的环境后果:综述。Earth-Sci. Rev. 146,77 – 91。Ha, TP, Dieperink, C., Tri, VPD, Otter, HS, Hoekstra, P.,2018a。越南湄公河三角洲适应性淡水管理的治理条件。J. Hydrol. 557,116 – 127。 Ha, DT、Ouillon, S.、Vinh, GV,2018b。根据高频测量(2009 – 2016 年)得出的湄公河下游水和悬浮沉积物预算。水 10, 846 。Harris, I.、Osborn, TJ、Jones, P.、Lister, D.,2020。CRU TS 月度高分辨率网格化多元气候数据集第 4 版。科学数据。https://doi.org/10.1038/s41597-020-0453-3)。Hecht, JS、Lacombe, G.、Arias, ME、Dang, TD,2019。湄公河流域的水电大坝:其水文影响回顾。水文杂志 568, 285 – 300 。 Hoang, L.、Ngoc, TA、Maskey, S.,2016。一种用于估算越南湄公河三角洲 CERES-rice 模型参数的稳健参数方法。大田作物研究。196,98 – 111。Hoanh, CT、Jirayoot, K.、Lacomne, G.、Srunetr, V.,2010。气候变化和发展对湄公河流量制度的影响:首次评估 – 2009 年。MRC 技术论文第 29 号。湄公河委员会,老挝万象。Jordan, C.、Tiede, J.、Lojek, O.、Visscher, J.、Apel, H.、Nguyen, HQ、Quang, CNX、Schlurmann, T.,2019。重新审视湄公河三角洲的采砂 – 目前当地沉积物短缺的规模。 Rep. 9,17823 。 Kantoush, S.、Binh, DV、Sumi, T.、Trung, LV,2017。上游水电站大坝和气候变化对越南湄公河三角洲水动力学的影响。J. Jpn. Soc. Civ. Eng. Ser. B1 73 (4),109 – 114 。Kendall, AMG,1938。一种新的秩相关性测量方法。Oxford J. 30,81 – 93 。Kiem, AS、Ishidaira, H.、Hapuarachchi, DP、Zhou, MC、Hirabayahi, Y.、Takeuchi, K.,2008。使用高分辨率日本气象局 (JMA) AGCM 模拟湄公河流域未来水文气候学。水文过程。22,1382 – 1394 。 Kingston, DG、Thompson, JR、Kite, G.,2010。湄公河流域气候变化预测排放量的不确定性。水文地球系统科学讨论。7,5991 – 6024。Kondolf, GM、Rubin, ZK、Minear, JT,2014。湄公河上的水坝:累积沉积物匮乏。水资源研究。50,5158 – 5169。 Kondolf, GM, Schmitt, RJP, Carling, P., Darby, S., Arias, M., Bizzi, S., Castelletti, A., Cochrane, TA, Gibson, S., Kummu, M., Oeurng, C., Rubin, Z., Wild, T., 2018. 湄公河沉积物预算的变化:大型河流流域的累积威胁和管理策略。环境科学总论 625, 114 – 134 。Kummu, M., Lu, XX, Wang, JJ, Varis, O., 2010.湄公河沿岸新兴水库的全流域泥沙截留效率。地貌学 119,181 – 197 。 Lauri, H.,De Moel, H.,Ward, PJ,R ¨ as ¨ anen, TA,Keskinen, M.,Kummu, M.,2012。湄公河水文未来变化:气候变化和水库运行对流量的影响。水文地球系统科学 16,4603 – 4619 。 Li, D.,Long, D.,Zhao, J.,Lu, H.,Hong, Y.,2017。湄公河流域观测到的流动状态变化。水文杂志 551,217 – 232 。 Lu, XX,Siew, RY,2006。过去几十年来湄公河下游的水流量和泥沙通量变化:中国大坝的可能影响。 Hydrol. Earth Syst. Sci. 10, 181 – 195 。 Lu, XX, Li, S., Kummu, M., Padawangi, R., Wang, JJ, 2014. 湄公河下游清盛水流变化观测结果:中国水坝的影响? Quat. Int. 336, 145 – 157 。 Mai, NP, Kantoush, S., Sumi, T., Thang, TD, Trung, LV, Binh, DV, 2018. 评估和适应水坝运行和海平面上升对越南湄公河三角洲海水入侵的影响。J. Jpn. Soc. Civ. Eng. Ser. B1 74 (5), 373 – 378 。 Manh, NV、Dung, NV、Hung, NN、Kummu, M.、Merz, B.、Apel, H.,2015。湄公河三角洲洪泛区未来沉积物动态:水电开发、气候变化和海平面上升的影响。全球地球变化 127,22 – 33。Mann, HB,1945。非参数趋势检验。计量经济学 13,245 – 259。McCuen, RH、Knight, Z.、Cutter, G.,2006。Nash-Sutcliffe 效率指数评估。水文工程杂志 11(6),597 – 602。湄公河委员会 (MRC),2005。湄公河流域水文概况,万象,82。湄公河委员会。 Milliman, JD、Farnsworth, KL、Jones, PD、Xu, KH、Smith, LC,2008。1951-2000 年气候和人为因素对全球河流排入海洋的影响。全球地球变化 62,187-194。Pettitt, AN,1979。变点问题的非参数方法。应用统计 28(2),126-135。Poff, NL、Ward, JV,1989。径流变异性和可预测性对流水群落结构的影响:径流模式的区域分析。加拿大鱼类水产科学杂志 46,1805-1818。 Pokhrel, Y.、Burbano, M.、Roush, J.、Kang, H.、Sridhar, V.、Hyndman, DW,2018。气候变化、土地利用和水坝对湄公河水文的综合影响综述。水 10 (3),1 – 25。R ¨ as ¨ anen, TA、Koponen, J.、Lauri, H.、Kummu, M.,2012。湄公河上游流域水电开发对下游水文的影响。水资源管理 26,3495 – 3513。湄公河流域流动状态的观测变化。J. Hydrol. 551, 217 – 232 。Lu, XX, Siew, RY, 2006. 过去几十年来湄公河下游水流量和泥沙通量的变化:中国大坝的可能影响。水文地球系统科学 10, 181 – 195 。Lu, XX, Li, S., Kummu, M., Padawangi, R., Wang, JJ, 2014. 湄公河下游清盛水流的观测变化:中国大坝的影响?Quat. Int. 336, 145 – 157 。 Mai, NP、Kantoush, S.、Sumi, T.、Thang, TD、Trung, LV、Binh, DV,2018。评估并适应大坝运行和海平面上升对越南湄公河三角洲海水入侵的影响。J. Jpn. Soc. Civ. Eng. Ser. B1 74 (5), 373 – 378。Manh, NV、Dung, NV、Hung, NN、Kummu, M.、Merz, B.、Apel, H.,2015。湄公河三角洲洪泛区未来沉积物动态:水电开发、气候变化和海平面上升的影响。Glob. Planet. Change 127,22 – 33。Mann, HB,1945。非参数趋势检验。计量经济学 13,245 – 259。 McCuen, RH、Knight, Z.、Cutter, G.,2006。Nash-Sutcliffe 效率指数评估。J. Hydrol. Eng. 11 (6),597 – 602。湄公河委员会 (MRC),2005。湄公河流域水文概况,万象,82。湄公河委员会。Milliman, JD、Farnsworth, KL、Jones, PD、Xu, KH、Smith, LC,2008。1951-2000 年影响全球河流排入海洋的气候和人为因素。全球星球变化 62,187 – 194。Pettitt, AN,1979。变点问题的非参数方法。Appl. Stat. 28 (2),126 – 135。 Poff, NL, Ward, JV, 1989. 径流变异性和可预测性对流水群落结构的影响:径流模式的区域分析。加拿大鱼类水产科学杂志 46,1805 – 1818 。Pokhrel, Y., Burbano, M., Roush, J., Kang, H., Sridhar, V., Hyndman, DW, 2018. 气候变化、土地利用和水坝对湄公河水文的综合影响综述。水 10 (3),1 – 25 。R ¨ as ¨ anen, TA, Koponen, J., Lauri, H., Kummu, M.,2012. 湄公河上游流域水电开发对下游水文的影响。水资源管理 26,3495 – 3513 。湄公河流域流动状态的观测变化。J. Hydrol. 551, 217 – 232 。Lu, XX, Siew, RY, 2006. 过去几十年来湄公河下游水流量和泥沙通量的变化:中国大坝的可能影响。水文地球系统科学 10, 181 – 195 。Lu, XX, Li, S., Kummu, M., Padawangi, R., Wang, JJ, 2014. 湄公河下游清盛水流的观测变化:中国大坝的影响?Quat. Int. 336, 145 – 157 。 Mai, NP、Kantoush, S.、Sumi, T.、Thang, TD、Trung, LV、Binh, DV,2018。评估并适应大坝运行和海平面上升对越南湄公河三角洲海水入侵的影响。J. Jpn. Soc. Civ. Eng. Ser. B1 74 (5), 373 – 378。Manh, NV、Dung, NV、Hung, NN、Kummu, M.、Merz, B.、Apel, H.,2015。湄公河三角洲洪泛区未来沉积物动态:水电开发、气候变化和海平面上升的影响。Glob. Planet. Change 127,22 – 33。Mann, HB,1945。非参数趋势检验。计量经济学 13,245 – 259。 McCuen, RH、Knight, Z.、Cutter, G.,2006。Nash-Sutcliffe 效率指数评估。J. Hydrol. Eng. 11 (6),597 – 602。湄公河委员会 (MRC),2005。湄公河流域水文概况,万象,82。湄公河委员会。Milliman, JD、Farnsworth, KL、Jones, PD、Xu, KH、Smith, LC,2008。1951-2000 年影响全球河流排入海洋的气候和人为因素。全球星球变化 62,187 – 194。Pettitt, AN,1979。变点问题的非参数方法。Appl. Stat. 28 (2),126 – 135。 Poff, NL, Ward, JV, 1989. 径流变异性和可预测性对流水群落结构的影响:径流模式的区域分析。加拿大鱼类水产科学杂志 46,1805 – 1818 。Pokhrel, Y., Burbano, M., Roush, J., Kang, H., Sridhar, V., Hyndman, DW, 2018. 气候变化、土地利用和水坝对湄公河水文的综合影响综述。水 10 (3),1 – 25 。R ¨ as ¨ anen, TA, Koponen, J., Lauri, H., Kummu, M.,2012. 湄公河上游流域水电开发对下游水文的影响。水资源管理 26,3495 – 3513 。湄公河三角洲洪泛区未来沉积物动态:水电开发、气候变化和海平面上升的影响。全球地球变化 127,22 – 33 。Mann,HB,1945。非参数趋势检验。计量经济学 13,245 – 259 。McCuen,RH、Knight,Z.、Cutter,G.,2006。Nash-Sutcliffe 效率指数评估。水文工程杂志 11(6),597 – 602 。湄公河委员会 (MRC),2005。湄公河流域水文概况,万象,82。湄公河委员会。 Milliman, JD、Farnsworth, KL、Jones, PD、Xu, KH、Smith, LC,2008。1951-2000 年气候和人为因素对全球河流排入海洋的影响。全球地球变化 62,187-194。Pettitt, AN,1979。变点问题的非参数方法。应用统计 28(2),126-135。Poff, NL、Ward, JV,1989。径流变异性和可预测性对流水群落结构的影响:径流模式的区域分析。加拿大鱼类水产科学杂志 46,1805-1818。 Pokhrel, Y.、Burbano, M.、Roush, J.、Kang, H.、Sridhar, V.、Hyndman, DW,2018。气候变化、土地利用和水坝对湄公河水文的综合影响综述。水 10 (3),1 – 25。R ¨ as ¨ anen, TA、Koponen, J.、Lauri, H.、Kummu, M.,2012。湄公河上游流域水电开发对下游水文的影响。水资源管理 26,3495 – 3513。湄公河三角洲洪泛区未来沉积物动态:水电开发、气候变化和海平面上升的影响。全球地球变化 127,22 – 33 。Mann,HB,1945。非参数趋势检验。计量经济学 13,245 – 259 。McCuen,RH、Knight,Z.、Cutter,G.,2006。Nash-Sutcliffe 效率指数评估。水文工程杂志 11(6),597 – 602 。湄公河委员会 (MRC),2005。湄公河流域水文概况,万象,82。湄公河委员会。 Milliman, JD、Farnsworth, KL、Jones, PD、Xu, KH、Smith, LC,2008。1951-2000 年气候和人为因素对全球河流排入海洋的影响。全球地球变化 62,187-194。Pettitt, AN,1979。变点问题的非参数方法。应用统计 28(2),126-135。Poff, NL、Ward, JV,1989。径流变异性和可预测性对流水群落结构的影响:径流模式的区域分析。加拿大鱼类水产科学杂志 46,1805-1818。 Pokhrel, Y.、Burbano, M.、Roush, J.、Kang, H.、Sridhar, V.、Hyndman, DW,2018。气候变化、土地利用和水坝对湄公河水文的综合影响综述。水 10 (3),1 – 25。R ¨ as ¨ anen, TA、Koponen, J.、Lauri, H.、Kummu, M.,2012。湄公河上游流域水电开发对下游水文的影响。水资源管理 26,3495 – 3513。
保留所有权利。未经许可不得重复使用。永久。预印本(未经同行评审认证)是作者/资助者,他已授予 medRxiv 许可,可以在此版本中显示预印本。版权所有者于 2025 年 1 月 28 日发布此版本。;https://doi.org/10.1101/2025.01.27.25320727 doi: medRxiv preprint
堪萨斯州美国退伍军人协会男童州分部堪萨斯州美国退伍军人协会男童州分部为数百名高中生提供了亲身实践的机会,积极参与从头开始建立代议制政府。在抵达作为项目所在地的堪萨斯州立大学校园之前,每位学生(称为 Staters)会被随机分配到国民党或联邦党“政党”。他们将在整个星期内保持党派归属,这样做的目的是让他们学会一起工作,体验不同的观点和协作。在周日早上抵达曼哈顿并报到后,Staters 立即组建市和县政府。接下来的两天用于起草地方法令和执行市和县的运作。与此同时,州办公室的竞选活动也开始了,几天之内,Staters 就选出了他们新州——堪萨斯男童州的官员。实践活动包括起草州法律、起草和通过预算、建立最高法院以及颁布与当今社会和需求相适应的法律。通过为每个人分配职业和相应的计算机银行账户,展示了大众的决定如何影响个人。在几分钟内
Yash Patel 1,2,3*,Chenghao Zhu 1,2*,Takafumi N. Yamaguchi 1,2,3*,Nicholas K. Wang 1,2,Nicholas Wiltsie 1,2,3 Mohammed Faizal Eeman Mootor 1,2,3 , Timothy Sanders 1,2,3 , Cyriac Kandoth 1,2 , Sorel T. Fitz-Gibbon 1,2,3 , Julie Livingstone 1,2,4 , Lydia Y. Liu 1,2,4 , Benjamin Carlin 1,2,3 , Aaron Holmes 1,2 , Jieun Oh 1,2 , John Sahrmann 1,2 , Shu Tao 1,2,3 , Stefan Eng 1,2 , Rupert Hugh- White 1,2 , Kiarod Pashminehazar 1,2 , Andrew Park 1,2 , Arpi Beshlikyan 1,2 , Madison Jordan 1,2 , Selina Wu 1,2 , Mao Tian 1,2 , Jaron Arbet 1,2 , Beth Neilsen 1,2 , Yuan Zhe Bugh 1,2,Gina Kim 1,2,Joseph Salmingo 1,2,Wenshu Zhang 1,2,Roni Haas 1,2,Aakarsh Anand 1,2,Edward Hwang 1,2,Anna Neiman-Golden 1,2,Anna Neiman-Golden 1,2,Philippa Steinberg 1,2,Wenyan Zhao 1,2 Boutros 1,2,3,4,5,§
1.0 背景 全基因组测序 (WGS) 已成为生殖系分析中广泛应用的工具,例如遗传病诊断和药物基因组学 [1]。WGS 还在人口研究中发挥重要作用,例如 All of Us 计划,它使大规模基因组研究能够揭示遗传多样性和疾病易感性 [2]。值得注意的是,WGS 正日益成为精准肿瘤学的综合工具,提供基因组景观的详细视图,以指导定制治疗方法的开发并优化癌症管理 [3]。随着 WGS 越来越多地从研究转变为常规临床使用,优化工作流程以提高精度、可扩展性和效率至关重要。解决 DNA 碎片不一致、文库转化率不理想、样本输入变异的繁琐优化及其导致的测序偏差等关键挑战对于确保高质量的数据和变异调用报告至关重要。
项目描述:这项工作将把尖端物理和工程研究与有影响力的临床应用相结合。在熟悉项目的技术和临床方面时,您将开始探索3D MRI序列和图像重建算法的开发和优化,该算法量身定制,以量化血流。最初的发展和模拟将在幻影和健康的成人志愿者中进行优化,然后在患者队列中进行扫描。您将有机会通过与洛桑大学医院(CHUV)的心脏病学和放射学的临床医生的一项已建立的合作来翻译您的工作。您将在介入的MRI环境中的高级3D流MRI序列的暗示中进行合作,这将允许对先天性心脏病患者的非侵入性血液动力学评估。介入的MRI套件是洛桑大学医院可用的独特结构,提供令人兴奋的研究可能性。您还将有机会传播您的工作并与我们广泛的国际研究机构网络合作。
随着数据处理从模拟文档转向数字文件和数据库的总体趋势,数字化工作流程在材料科学与工程领域变得越来越重要。此外,由于测量技术和模拟方法的改进,该领域生成或处理的数据量急剧增加。MaterialDigital 计划从广泛角度解决了这一问题,它基于 IT 基础设施构建了材料科学数字化的总体框架,以本体数据表示和工作流程为中心连接组件。[1] 工作流程之所以如此突出,是因为它们无处不在,只要信息和数据以数字形式提供并需要传输或转换。沿着数据价值链,这涵盖 1) 数据采集,即获取数据
分流电流是在流动电池堆栈中产生的难以捉摸的效果,尽管这是内部损失的主要原因,但仍受到部分关注,直接影响效率和可操作性。现有研究用电阻器网络对其进行建模。首次,由于同源电极之间的电势差,本文对在流体电解质中移动的电荷载体进行了基础分析。将钒化学作为研究案例,用Navier-Stokes,Nernst-Planck and Cancervertice方程分析了离子V 2+,V 2+,V 3+,VO 2+,H+,HSO 4 - ,SO 4 2的导电性,扩散和对流运动。3D和2D数值实现允许分析稳态和瞬态条件。分流电流的贡献是在不同尺寸和不同负载下的堆栈中计算出来的,这表明功率损耗范围从5细胞堆栈中的0.17%到40细胞堆栈中的6.9%不等,在较低的负载电流下较高。该方法允许识别影响分流电流的主要因素,例如膜的渗透率,电极孔隙率和流通道设计。这些结果阐明了减轻分流电流的策略,以提高效率。