摘要。这项工作旨在研究1950 - 2019年期间,ERA5预测ERA5预测ERA5预测的趋势的时间稳定性和可靠性。使用ERA5的分析状态数量研究了趋势的驱动力。估计重新分析数据的趋势可以是挑战,因为观察系统的变化可能会引入时间不一致。为此,讨论了分析增量的影响。对于北大西洋盆地的各个子区域,潜在且明智的热量流量的参数化形式是线性的,以定量地将趋势归因于风速,水分和温度的长期变化。我们的结果表明,来自ERA5的良好的时间稳定性和良好的空气热量在亚巴巴辛尺度及以下预测。区域平均值表明,趋势在很大程度上是由皮肤温度和大气对流的变化驱动的(例如温暖或干燥的空气质量)。还讨论了在发现的模式下,还讨论了所发现的模式的气候变化模式的影响。结果表明,在过去40年中,与NAO相关的Irminger和Labrador Seas的趋势产生了重大影响。最后,我们使用盆地范围的空气热环和观察性海洋热含量估算的趋势,以提供基于能量预算的大西洋子午线翻转循环(AMOC)的趋势估计。北大西洋盆地的面积平均空气热量降低表明,在研究期间,AMOC的下降。然而,盆地范围的频率趋势被认为是人为的,如暂时变化的水分增量所示。因此,确切的变化幅度尚不确定,但是它的符号看起来很健壮,并增加了补充证据,表明AMOC在过去70年中已经削弱了。
海洋生物地球运动员组碳固隔机制中的碳泵。最初创建了这一问题,目的是解释在全球海洋45中观察到的DIC浓度增加,因此没有考虑有机碳在沉积物中的储存。后来将碳泵应用于海洋碳固换,在这种情况下,其定义包括有机碳转运到海洋内部,可能是沉积物。的确,IPCC 7对海洋碳泵的定义如下:溶解度泵是“一种物理化学过程,将溶解的无机碳从海面传递到其内部[…]的内部[...]驱动,主要由二氧化碳的溶解度驱动(CO 2)[CO 2)[…]和大型,热量,热氢键模式的海洋循环”;碳酸盐泵由“碳酸盐的生物形成,主要是由浮游生物产生的生物矿物质颗粒,这些颗粒沉入海洋内部,可能是沉积物[…]伴随着CO 2释放到周围的水,后来又释放到了大气中”;这是本研究的重点,生物碳泵将POC和DOC运送到“海洋内部,可能是沉积物”。
库汉技术大学材料综合与加工高级技术的国家主要实验室https://orcid.org/0009-0009-0008-1431-7443
免责声明 本信息是根据美国政府机构赞助的工作编写的。美国政府及其任何机构或其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
摘要每年,生物碳泵(BCP)将大量碳从海面传输到内部。这种转移的效率在地理上有所不同,是大气 - 海洋二氧化碳平衡的关键决定因素。传统上,注意力集中在解释这种转移效率(TE)中的地理变化,以便理解它,这种方法导致了矛盾的结果。在这里,我们结合了观测值和建模,以表明TE的空间变异性可以用碳通量衰减的季节性变异来解释。我们还表明,由于采样日期和持续时间的差异,季节性可以解释已知的全球TE全球估计值之间的对比。我们的结果表明,在TE中年度平族模式的机械解释中谨慎,并证明可能需要季节性和空间解决的数据集和模型来生成对BCP的准确评估。
摘要:提出了沿着墨西哥湾北部大陆斜率评估边界混合过程的试点计划的结果。我们报告了一种新颖的尝试,以在常规系泊台上利用湍流传感器。这些数据记录了分层EKMAN层的许多特征:高度上的浮力异常,而不是毫无形式的Ekman层的浮力异常,并且具有深度的速度向量的增强转向。湍流应力估计值具有适当的幅度,并与近底速度载体对齐。但是,Ekman层是取决于惯性时间尺度的时间。交叉斜率动量和温度频道具有该频带的显着贡献。共处的湍流动能耗散和温度方差耗散估计意味着耗散比为0.14,与剪切不稳定性的规范值无明显不同(0.2)。这种混合签名与内部波带中的生产有关,而不是与湍流剪切产生相关的频率。我们的结果表明,在涡流变异性的幌子中,对准平台强迫的准平台响应的期望是天真的,边界层结构不支持有关边界混合的一维模型的最新理论假设。
电场辅助纳米滤过用于PFOA去除PFOA,并使用电场辅助纳米过滤术,用于除外的PFOA去除,并具有出色的通量,选择性和破坏性的特殊通量,选择性和破坏性
土壤呼吸(RS)是大气CO 2的最大来源,对近地面风之间的关系,CO 2从土壤表面释放,测量方法对预测未来的大气CO 2浓度至关重要。在这项研究中,风速与土壤CO 2通量之间的关系通过荟萃分析在全球范围内阐明,并进一步探讨了通量测量方法与对照试验的结果一起探索,以阐明测量结果的不确定性。结果表明,近地面风速与土壤CO 2释放呈正相关,而近地表风导致土壤CO 2气体释放增加。风干扰会影响浓度梯度和气体室测量值,而较低计算的土壤CO 2释放了与风泵效应和负压的伯诺利效应的观点相冲突,导致更大的表面气体交换。对数响应比率的结果表明,在广泛使用的气体室方法测量值中,近地表风导致低估为12.19–19.75%。这项研究的结果表明,当前的RS测量值有偏见,并且需要紧急处理近地表风对RS测量的影响,以更准确地评估陆地碳循环并制定气候变化响应策略。
