近年来,许多飞机制造商都提出了基于触摸屏的创新驾驶舱概念。尽管具有大量优势,但此类解决方案在操作使用方面受到严重限制,特别是几乎不可能实现无需注视的交互,而且在湍流条件下使用触摸屏非常复杂。我们通过引入一种形状可变的触摸屏来研究物理特性对克服这些弱点的贡献,这种触摸屏提供了可供用户手部休息的褶皱。在模拟器中,在湍流和脑力负荷各不相同的驾驶条件下,对该表面进行了评估。结果表明,褶皱有助于通过稳定手臂和手部来减少体力消耗。这种物理特性还与驾驶任务中的更好表现以及对飞机系统状态的更好态势感知有关,这肯定是因为折叠提供的形状具有更好的视觉特性(显著性),使得对它们的监控在注意力资源方面成本更低。
随着晶体管特征尺寸的减小,HE 对高能粒子的敏感性会增加 [1-3]。由于电子系统广泛用于恶劣环境,文献中对缓解辐射影响的技术进行了大量的研究 [4-7]。可以从制造工艺修改到不同的设计实现来探索辐射加固策略。掺杂分布的修改、沉积工艺的优化和不同材料的使用都是众所周知的工艺加固辐射 (RHBP) 技术的例子。然而,除了成本较高之外,RHBP 通常比最先进的 CMOS 工艺落后几代,导致性能低下。另一方面,辐射加固设计 (RHBD) 已被证明可有效增强对辐射效应的抵抗力 [7]。这些技术可以在从电路布局到系统设计的不同抽象级别上实现。单粒子效应 (SEE) 的产生机制与集成电路 (IC) 的物理布局密切相关,例如,晶体管 pn 结中的能量沉积和电荷收集之间的关系。因此,可以在电路布局级别应用多种硬化方法,例如封闭布局晶体管 (ELT)、保护环、虚拟晶体管/栅极或双互锁存储单元 (DICE) [6-9]。
摘要。折叠方案是一个令人兴奋的新原始性,它改变了执行多个零知识的知识证明以建立关系的任务,以仅执行一个零知识证明,以进行相同的关系,并进行许多廉价的包容性证明。最近,折叠方案已被用来摊销与具有各种应用程序的多个不同验证者证明不同陈述相关的成本。我们观察到,对于这些用途,泄漏有关折叠的陈述的信息可能是有问题的,但是以前的构造会发生这种情况。为解决此问题,我们对保留折叠计划的隐私及其应提供的安全性提供了自然的定义。为了构建保留折叠方案的隐私,我们首先定义了声明hiders,这是一种可能具有独立感兴趣的原始性。简而言之,一种语句隐藏了一个关系的实例作为新实例。当且仅当初始实例为时,新实例才在关系中。使用此构建块,我们可以通过首先隐藏每个语句来利用现有的折叠方案来构建隐私折叠方案。折叠方案允许验证语句折叠到另一个语句中,而语句隐藏器允许验证语句被隐藏为另一个语句。
折叠和折纸原理可以从平面paters中实现三维几何形状[1]。由于制造过程通常更有效,甚至一定要在两个维度上完成,因此折叠提供了一种利用这种效率的方法,并具有三维最终结果。平面制造过程与折叠的组合导致了与机器人[2,3],弹簧 - 孔子机制[4],反射和阵列[5,6]和超材料[7,8]一样的潜在应用。兼容的机制通过经历弹性变形而不是传统链接的刚体运动来转移或转化运动,力或能量[9]。各种制造技术可用于各种规模的合规机理,例如电线电气加工(EDM),增材制造,表面微加工,
位于法国格勒诺布尔的欧洲同步辐射设施。同步辐射光源使用巨型储存环中加速到接近光速的电子来产生非常明亮的 X 射线。该环的周长为数百米;绕设施一圈需要 15 分钟。
摘要:机器学习方法的最新进展对蛋白质结构预测产生了重大影响,但准确生成和表征蛋白质折叠途径仍然难以实现。在这里,我们展示了如何使用在残基级接触图定义的空间中运行的定向行走策略生成蛋白质折叠轨迹。这种双端策略将蛋白质折叠视为势能表面上连接最小值之间的一系列离散转换。随后对每个转换进行反应路径分析,可以对每条蛋白质折叠路径进行热力学和动力学表征。我们根据由疏水和极性残基构成的一系列模型粗粒度蛋白质的直接分子动力学模拟,验证了我们的离散行走策略生成的蛋白质折叠路径。这种比较表明,基于中间能量屏障对离散路径进行排序为识别物理上合理的折叠集合提供了一种方便的途径。重要的是,通过在蛋白质接触图空间中使用定向行走,我们绕过了与蛋白质折叠研究相关的几个传统挑战,即需要较长的时间尺度和选择特定的顺序参数来驱动折叠过程。因此,我们的方法为研究蛋白质折叠问题提供了一种有用的新途径。■ 简介
摘要 在哺乳动物进化的过程中,大脑尺寸和皮质折叠反复增加和减少。识别与这些性状共同进化的遗传元素,其序列或功能特性可为进化和发育机制提供独特信息。TRNP1 是这种比较方法的一个很好的候选者,因为它控制着小鼠和雪貂神经祖细胞的增殖。在这里,我们研究了 TRNP1 的调控序列和编码序列对 30 多种哺乳动物大脑尺寸和皮质折叠的贡献。我们发现 TRNP1 蛋白质进化的速度 ( ω ) 与大脑尺寸显著相关,与皮质折叠的相关性略低,与身体尺寸的相关性小得多。这种大脑相关性比 95% 以上的随机对照蛋白更强。这种共同进化可能影响 TRNP1 活性,因为我们发现来自大脑较大和皮质折叠较多物种的 TRNP1 会诱导神经干细胞的更高增殖率。此外,我们在大规模并行报告基因测定中比较了 TRNP1 的假定顺式调控元件 (CRE) 的活性,并确定了一种可能与旧世界猴和猿类的皮质折叠共同进化的 CRE。我们的分析表明,增加 TRNP1 活性的编码和调控变化被积极地选择为脑容量和皮质折叠增加的原因或结果。它们还提供了一个示例,说明系统发育方法如何为生物机制提供信息,尤其是当与多个物种的分子表型相结合时。
近年来,许多飞机制造商都提出了基于触摸屏的创新驾驶舱概念。尽管具有大量优势,但此类解决方案在操作使用方面受到严重限制,特别是几乎不可能实现无需注视的交互,而且在湍流条件下使用触摸屏非常复杂。我们通过引入一种形状可变的触摸屏来研究物理特性对克服这些弱点的贡献,这种触摸屏提供了可供用户手部休息的褶皱。在模拟器中,在湍流和脑力负荷各不相同的驾驶条件下,对该表面进行了评估。结果表明,褶皱有助于通过稳定手臂和手部来减少体力消耗。这种物理特性还与驾驶任务中的更好表现以及对飞机系统状态的更好态势感知有关,这肯定是因为折叠提供的形状具有更好的视觉特性(显著性),使得对它们的监控在注意力资源方面成本更低。
向我们提出了一个概念性的想法,没有明显的生产过程来实现成品所需的高公差。与牛津太空系统合作,我们对找到一种提供完美结果的方法充满信心。
折叠式和展开的分子选择用于热力学稳定性的选择是最新的发展是使用噬菌体显示器来选择具有改善热力学性能的蛋白质。通常,蛋白质稳定性是生物技术应用中的关键因素,无论是在升高温度还是在37°C下在生物医学应用中延长持续时间,并且通常与蛋白质搁板寿命相关。只有只有正确折叠的完整分子,因此功能结合位点才能与固定的配体相互作用,只要非本性蛋白质典型的非特异性相互作用可以有效地选择,则该形式可以通过噬菌体显示。在这些条件下,只要没有其他突变改变结合位点,功能性配体结合的选择有利于在噬菌体上更高的多肽突变体,即噬菌体,即较高百分比的分子位于本地状态的多肽突变体。作为一个序列,使用噬菌体显示的“正常”选择始终包括正确折叠的库成员的固有选择,因此在可接受的总体属性中选择了“复合”选择。有几位研究者[16-18]指出了这种观察结果,并在一项研究[19]中进行了系统的测试并证明,其中最佳折叠和最稳定的SCFV(单链抗体片段)可以从具有识别结合常数的一组SCFV中选择,但具有不同的热力学和折叠性和折叠性质。