获取独家产品信息,尽享促销优惠!立即订阅,不容错过
* 限···时··优惠
摘要 - 这项研究阐明了农业行业的发展,并强调了生产领域的进步。作为关键质量参数的果实大小和形状的显着识别强调了研究的重要性。应对这一挑战,该研究介绍了旨在简化农业环境中苹果的专业图像处理技术,特别强调了准确的苹果宽度估计。设计了专用的机器,其中包含一个围栏,该机箱装有一个具有成本效益的摄像头,以及用于对Malus fomeflya bockh borkh and Apples进行分类的链条输送机。通过实施图像预处理,细分和测量技术来成功实现这些目标,以促进分类。所提出的方法将苹果分为三个不同的类别,在第1类中获得了94%的令人印象深刻的精度,在第2类中达到92%,在第3类中达到86%。这代表了苹果分类和尺寸估计的有效且经济的解决方案,有望大大提高分类过程并突破农业部门的自动化界限。关键字 - 农业,开源计算机视觉(OPENCV),苹果,排序,宽度估计