更好的沟通策略支持与公众和商业行业的互动,这将增强国防部获得外部人才服务的能力。与此同时,愿意解决阻碍内部人才发展的文化障碍,将使人们能够采取持久的方法来留住这些非常有价值的人才,而不仅仅是强制性承诺。国防部应在负责任的人工智能部署方面发挥表率作用,必须重新思考如何吸引和留住有能力的人才。建议采取的行动包括为人工智能人才的入职创造更多机会,进一步促进已经在国防部工作的人工智能员工的职业发展,为这些员工提供使他们能够完成工作的技术,并与其他政府和私人组织合作。
[1] R. Sutton和A. Barto,《加固学习简介》,麻省理工学院出版社,1998年。[2] C. Szepesvari,《增强学习算法》,Morgan&Claypool Publishers,2010年。[3] C. Watkins,从延迟的奖励中学习,博士学位论文,剑桥大学,英格兰,1989年。[4] M. Wiering和M. Van Otterlo,加固学习:最新的ART,Springer,2014年。[5] M. Puterman,马尔可夫决策过程:离散随机动态编程,Wiley,1994年。[6] D. P. Bertsekas,动态编程和最佳控制,第一卷和II,雅典娜科学,2017年。[7] W. B. Powell,近似动态编程,Wiley,2011年。[8]选定的纸
熔融混合的抽象处理参数(聚合物加工中最常规的技术之一)在所得材料的质量和特性中起着重要作用,尤其是在涉及纳米孔孔的情况下。当前的研究研究了螺丝挤出机的变化处理温度,旋转速度和元素,旨在通过改善PE的两个级别的商用大师的纳米粒子来增强聚乙烯(PE)纳米复合材料的机械性能。该研究投资于聚乙烯中常见兼容剂(MAPE)和剪切力的影响。对机械性能,形态和微观结构的变化进行了比较。结果表明,增加的GNP量导致机械性能的预期连续增加,指的是基础聚合物。MAPE的添加并没有显着改善研究系统的性能。 使用更强的剪切力会对性质产生负面影响。MAPE的添加并没有显着改善研究系统的性能。使用更强的剪切力会对性质产生负面影响。
我们为不依赖于人类反馈的大型语言模型(LLMS)提出了一种新颖的增强学习(RL)框架。相反,我们的方法使用模型本身中的交叉注意信号来获得自我监督的奖励,从而指导对模型策略的迭代微调。通过分析模型在生成过程中如何“参加”输入提示,我们构建了及时的覆盖,重点和连贯性的度量。然后,我们使用这些措施来对候选响应进行排名或评分,提供了奖励信号,鼓励模型产生良好的一致,主题文本。在与标准策略梯度方法的经验比较和合成偏好模型的RL微调中,我们的方法在非RL基线的迅速相关性和一致性方面显示出显着的提高。虽然它尚未与完全监督的RLHF系统的性能相匹配,但它突出了使用最小的人类标记来扩展对齐的重要方向。我们提供了详细的分析,讨论潜在的局限性,并概述了将基于跨注意的信号与较少人类反馈相结合的未来工作。
疲劳裂纹是钢结构的常见缺陷,在不同的负载和各种环境因素的长期影响之后[1]。如果没有及时有效治疗,它最终可能导致结构性疲劳失败。维修和加固技术的出现提供了一种解决此问题的新方法。与更换损坏的结构部件相比,维修和加固技术在时间和成本方面都具有很大的优势[2,3]。在裂纹尖端上使用裂纹停止孔是最常用的临时控制技术之一。在过去的几十年中,许多学者研究了裂纹停止孔的工程应用[4,5]。结果表明,裂纹停止孔的形状,尺寸和姿势的合理设计可以有效地降低裂纹的生长速度并增加残留疲劳寿命。但是,当在疲劳裂纹尖端处理裂纹停止孔时,原始结构的机械强度被削弱,并创建了新的容易疲劳的区域。更重要的是,当裂纹从裂纹停止的边缘启动时,由于存在停止孔的存在,新裂纹的膨胀速率不会改变[6]。作为一种复合材料,纤维增强聚合物(FRP)材料具有高强度重量比,良好的耐腐蚀性和疲劳性能,并且几乎可以将其分为几乎所有所需的形状。在过去的几年中,关于结构缺陷大小的影响[7,8],粘合剂的特性[9,10]和FRP键合法
重新评估期中考试:学生将在考试期间访问他们的期中考试。担心如何在中期考试中有特定问题的学生可以在接受标记考试之日的两个星期内通过电子邮件向教练提交请求。请求应指定要重新评估哪个问题,(2)该请求的基本原理,以及(3)提出的标记。重要的是,一旦提交了重新评估请求,就可以根据教师的酌处权来调整标记。不允许学生与他们一起参加期中考试,也不可以为他们拍照,因此,如果令人担忧,建议学生在考试期间做笔记。TA无权在中期考试中进行权衡,这是教练只能做的事情。一旦重新评估问题,也可以注意标记。
深度加强学习(DRL)在许多复杂的决策任务中都取得了成功。然而,对于许多现实世界应用,标准的DRL培训在具有脆弱性能的代理商中恢复,特别是在关键问题问题上,发现安全和成功的策略都非常具有挑战性。已经提出了各种探索策略来解决这个问题。但是,他们没有考虑当前的安全性能的信息;因此,它们无法系统地在与培训最相关的状态空间部分上进行系统。在这里,我们提出了基于估计的深度强化学习(稀有)中的状态,该框架介绍了两种创新:(i)将安全评估阶段与国家修复阶段与国家修复阶段,即,在未访问的状态和(ii)估计的promiere extimies nefiperies of n.gap中,gap secried and gap secried seformist of the MAR均进行了iSe。我们表明,这两种创新都是有益的,并且在经验评估中,罕见的优于深度学习和探索等基线。
特警团队的内部结构可以根据代理的规模和社区的特定需求而有所不同。但是,大多数SWAT团队将具有相似的核心结构,通常包括以下内容:●指挥人员:负责计划和监督特警行动的人员,包括SWAT指挥官(通常是执法机构的高级成员)和战术指挥官,他们是负责在现场行动中负责的。●团队负责人:负责领导较小的SWAT操作员团队的特警人员。这些团队可能专门研究特定领域,例如进入,狙击或K-9。●特警操作员:通过战术,武器和使用武力的特警人员,并负责解决原本会超过传统执法第一响应者能力的事件。●危机谈判团队:专门训练有素的人员,他们擅长人质谈判和降级策略。他们与特警队紧密合作,和平解决关键事件。●UAS/Robotics Pilot:飞行员可以是SWAT团队的成员,也可以是经过特殊培训的宣誓就职人员,其责任是UAS或其他机器人的决策和运营,以帮助SWAT团队进行运营和计划。
电气和电子工程师协会 › iel7 作者 VHL Lopes · 2022 · 被引用 1 — 作者 VHL Lopes · 2022 被引用 1 与信道建模和仿真相关,特别关注... 采用的块结构可以表示标准的多帧组织。 17 页