本文提出了一套新的缩放定律,用于研究轻质钢筋混凝土隧道衬砌在 1g 振动台试验中的开裂后行为。开裂后行为缩放定律使用两个无量纲参数制定:脆性数 s ,它控制非钢筋混凝土构件的断裂现象;NP ,它对钢筋混凝土构件中混凝土断裂过程和钢塑性流动的稳定性起主要作用。提出的定律允许开发“充分”的实验模型,并使用原型和 1:30 模型比例的岩石钢筋隧道的数值分析进行验证。采用的实验装置的灵感来自现有的 1g 物理测试活动,该测试活动针对岩石混凝土隧道的地震响应,并且假设的定律表明在两个检查的地震记录下,模型和原型隧道的开裂行为具有令人满意的相似性。强调了在 1g 测试中使用提出的定律对钢筋混凝土隧道中不断发展的裂缝模式进行 A 级预测的潜力。在三种可能的边界条件下对所提出的定律进行了检验,结果表明,与设想的自由场边界模型相比,刚性箱和层流箱仍然可以显著改变行为。但分析表明,对于较大的土壤与衬砌刚度比,边界伪影可以大大减少。本研究为迄今为止尚不存在的未来 1g 测试提供了有用的建议,而所提出的缩放定律允许在设计新型隧道衬砌模型测试材料时具有多功能性。
还必须评估 AI 工具在具体案例中的表现。例如,AI 系统应容忍何种程度的错误(包括假阳性和假阴性)?答案可能取决于几个因素,例如错误对个人和执法资源造成的后果的严重性;AI 系统分析的个人信息的敏感性;以及在没有 AI 系统的情况下使用的调查流程的相对准确性、成本、可扩展性或速度。性能可以在实验室(部署前)和现场进行评估,在这两种情况下,用于确定最低准确度的阈值和因素可能不同。工具的使用时间也可能很重要,因为机器学习系统的性能通常会随着使用而提高。
Shi,Shaoshuai等。“运动变压器具有全球意图定位和本地运动的重新构成”。2022。Shi,Shaoshuai等。“ MTR ++:具有对称场景建模和指导意图查询的多代理运动预测。”2023。
本文的目的是通过深度增强学习对小鼠大脑的基底神经节功能进行建模。众所周知,基底神经节可以提供带有皮质直接影响运动功能的反馈回路。基底神经节中的大多数神经元都是抑制性或多巴胺能。这类似于加强学习的奖励体系。由于几乎不可能对基底神经节的整个应用进行建模,因此本文将重点介绍在迷宫的应用程序中对基底神经节进行建模,其中鼠标在迷宫中,并且需要找到“一块奶酪”(奖励)。这种现实世界的测试通常是在小鼠上进行的,并很好地展示了如何通过增强学习,通过奖励模仿学习[1]。在这种情况下,将在模拟动作方面抽象出其他相关领域(如感觉皮层和运动皮层)的功能和建模。总体而言,通过增强学习对基础神经节的关键功能将是其在行动选择和学习中的用途。
想象力,基于模型的推理和决策的神经基础对神经科学产生了很大的兴趣[5-7];在认知水平上,在动物和人类学习中已经假设并证明了模型学习和心理模拟[8-11]。其在基于人工模型的代理中的成功部署迄今已仅限于可用的确切过渡模型[12]或模型易于学习的域中的设置,例如符号环境或低维系统[13 - 16]。在代理无法使用模拟器的复杂域中,最近的成功由无模型方法主导[2,17]。在此类域中,采用标准计划方法的基于模型的代理的性能通常会遭受功能近似作用的模型错误[18,19]。这些错误在计划过程中复合了,导致过度优势和剂性能差。当前没有计划
课程与教学回顾:我们的课程要求和课程设置符合明尼苏达州标准、共同核心 ELA 和国家共同核心艺术标准。学生每季度上课可获得一个学分。学生每季度每天上四门课。如果学生全勤并成功完成每门课程,他们将获得 64 个学分;PiM 艺术高中要求学生获得 56 个学分才能毕业。在这些学分中,学生在语言艺术和社会研究方面获得八个或更多学分。学生在数学和科学方面获得六个或更多学分。学生可以通过各种舞蹈课程获得所需的体育学分。要获得艺术认可 - 学生必须在其专业中获得 18 个或更多学分,包括核心必修课和选修课。
6) 2023 年 9 月 21 日发布的招标通知 (NIT) 针对四 (4) 个独立招标,用于验证、核对和完成不同 DISCOM 的强制销售。投标人可以参与多个投标,不受限制。每个投标应单独评估,并将中标人授予中标人。在对投标进行评估后,如果发现投标人在多个 (1) 投标中成功,则在这种情况下,将多个 (1) DISCOM 的上述任务授予该投标人将基于相关投标人在附件 7 所附格式中提供的偏好。但是,将多个 (1) DISCOM 的上述任务授予任何投标人将属于委员会的管辖范围,委员会的决定应为最终决定并具有约束力。
c. 如果我们将新西兰警察局、新西兰国防军和毛利卫生局与皇家实体支出一起计算,政府可能会发现部门支出中承包商和顾问节省的资金略多于三分之一,非部门支出中节省的资金接近三分之二。 d. 2022/23 年,非部门机构在承包商和顾问的 OPEX 上所占总劳动力支出的比例低于部门和部门机构。然而,最新的 2023 年 9 月季度结果显示,部门的 OPEX 份额趋于回升至 10% 左右。 e. 迄今为止,削减支出的动力主要集中在 OPEX 上。这是因为 CAPEX 通常侧重于基础设施的长期建设,并且通常依赖于公共服务部门不会期望直接持续雇用的专业知识类型(例如工程师或建筑师)。
[1] R. Sutton和A. Barto,《加固学习简介》,麻省理工学院出版社,1998年。[2] C. Szepesvari,《增强学习算法》,Morgan&Claypool Publishers,2010年。[3] C. Watkins,从延迟的奖励中学习,博士学位论文,剑桥大学,英格兰,1989年。[4] M. Wiering和M. Van Otterlo,加固学习:最新的ART,Springer,2014年。[5] M. Puterman,马尔可夫决策过程:离散随机动态编程,Wiley,1994年。[6] D. P. Bertsekas,动态编程和最佳控制,第一卷和II,雅典娜科学,2017年。[7] W. B. Powell,近似动态编程,Wiley,2011年。[8]选定的纸