摘要:由带有天然纤维增强的聚合物基质组成的材料称为天然纤维增强聚合物复合材料(NFRCS)。科学家最近对这些复合材料非常感兴趣,因为它们比常规合成纤维增强的聚合物复合材料提供了改进的性能,其成本较低,并且具有环境优势。然而,包括γ辐射暴露在内的几个因素和纳米颗粒的添加会影响NFRC的性质。本综述将集中于伽马辐射和纳米颗粒对NFRC的机械,热和防水特性的影响。为了帮助创建新的和改进的NFRC用于不同的应用,本综述旨在通过促进纤维和矩阵之间的更好键合,以增强复合材料的整体性能,从而对NFRCS的性质以及伽马射线和纳米颗粒的影响提供全面的了解。关键词:天然纤维,聚合物矩阵,复合材料的性能,伽马射线,纳米颗粒1介绍,一般而言,复合材料可以描述为在微观上至少两种不同材料的异质混合物,具有与其组成部分不同的新型特性,通常具有几乎同质的结构,并且具有几乎同质的结构。可以根据机会结合这种属性混合的机会来量身定制复合材料的质量以满足所需应用的需求(Erden&Ho,2017)。复合材料的机械性能受到纤维结构的极大影响。此外,许多部门目前都在寻找复合材料的新型特性,例如可更新性,几乎没有环境效应和负担能力。天然纤维增强复合材料的优势比传统材料和合成纤维增强的复合材料导致这些领域的研究和创新增加(Neto等,2022)。此外,天然纤维价格便宜,密度低,并且具有许多独特的特征。与其他增强纤维不同,它们是柔性,无毒,无育和生物降解的。此外,它们很容易访问,其独特特性与用作增强剂的其他纤维的特征相似(Aravindh等,2022)。天然植物材料中发现的纤维素纤维由无定形木质素和一些螺旋纤维素微纤维的基质制成。木质素有助于将水保持在纤维内并赋予茎的强度以承受风和重力,这是防御生物学攻击的防御。半纤维素是纤维素和木质素之间的兼容剂,是天然纤维的组成部分。图1描绘了天然纤维的结构(M. K. Gupta&Srivastava,2016年)。
在戈瓦丹,我们已经对尊重人权做出了明确的承诺。我们知道,童工和强迫劳动的风险仍然是全球供应链的关注点。作为一家工业企业,通过我们的采购活动与农业和其他供应链有着密切的联系,促进对劳工权利的尊重以及应对童工和强迫劳动风险的尊重,这特别是我们的重点。为了管理我们的风险和影响,我们已经实施了一项总体人权计划。我们将计划与国际认可的准则和框架保持一致,并遵守遵守有关瑞士条例的有关尽职调查和透明度的条例,与受冲突影响的地区以及受冲突影响的地区以及童工,英国以及澳大利亚现代奴隶制行为以及美国加利福尼亚在供应链中的透明度和其他适用法规以及美国加利福尼亚透明度和其他适用的法规。我们与国际框架的政策,立场和一致性我们对童工,强迫劳动,强制性劳动和人口贩运的立场和要求植根于我们的行为原则,人权政策和负责任的采购政策。这些反过来反映了包括联合国全球契约在内的倡议,该框架是一个框架,其目标是消除强迫,强制性和童工。我们遵守与最低年龄和最坏形式的童工(C138和C182)相关的相关ILO公约,并使我们对经合组织负责业务的尽职调查指南和联合国指导原则(UNGP)对我们的尽职调查指南(UNGPS)对我们的尽职调查指南对齐。我们不练习或容忍任何形式的儿童剥削,并且在儿童完成强制性教育之前,我们也不会为他们提供就业机会,无论如何,无论如何,在他们年龄达到15岁之前,我们都不会提供工作。这适用于Givaudan内部的就业,我们希望与我们一起工作的合作伙伴和供应商相同。我们观察到从事商业活动的年轻工人,但在法律上没有作为童工的资格,我们仍然致力于培训和教育,以确保他们始终受到保护,并且他们的教育权不受侵犯。
金属纤维的出现导致了通过不同制造方法开发不同纤维增强复合材料系统。利用金属纤维作为单一增强材料可以创造具有独特物理结构和对许多性能产生协同效应的全新材料。钢、铝、钛和铜是用于航空航天、船舶、汽车和结构应用等行业的金属纤维的例子。此外,结合各种材料系统(金属纤维 - 传统纤维)来制造混合复合材料的可能性允许成本和性能的无限变化。一般来说,金属以金属纤维金属层压板 (FML) 的形式提供,或以细丝和网状纤维的形式提供。与金属片形式相比,文献中对细丝和网状纤维的研究仍然有限。因此,这项工作重点回顾了细丝和网状金属的加工技术、性能和应用。本文详细介绍了金属纤维的应用、生产方法以及几种类型和形式。此外,还回顾了金属纤维增强聚合物复合材料的性能和应用。还回顾了金属化纤维的应用以及金属纤维与合成和天然纤维增强聚合物复合材料的混合。总之,部分探索的细丝和网状纤维形式的潜力似乎具有出色的机械、热和其他材料性能。钢纤维是最常用的金属纤维,因为它具有成本效益、可用形式多样、尽管重量很重但性能很高。
摘要。纳米材料领域的进步为在纳米级水平上开发基于水泥的复合材料提供了重要的前景。工程纳米材料的三个主要结构是零维纳米颗粒,一维纳米纤维和二维纳米片。文献报告了将零维纳米颗粒和一维纳米纤维(主要是纳米硅和碳纳米管)掺入各种应用中。最近发现的石墨烯氧化石墨烯是一种二维纳米片,由于其潜力与水泥矩阵相互作用而引起了显着的兴趣。研究的最新发现表明,氧化石墨烯具有改善水泥复合材料特性的潜力,从而导致高级水泥复合材料的发展,并提高了性能。本研究对与水泥纳米复合材料的发展有关的最新研究进行了全面的综述。本文重点介绍了在低剂量上引入纳米材料对水泥复合材料的特性的影响,例如可操时,强度,水平和微结构特征。
本报告旨在为建设性参与奠定基础,以促进在所有商业活动中尊重人权。本报告仅供参考。它不应被视为投资建议或股票研究报告。同样,它不应被视为购买或出售任何提及的证券的建议。本报告中表达的观点并非旨在预测未来事件或保证未来结果。报告中包含的信息和观点可能会随着时间而变化。本报告并不声称是对公司政策或实践的全面评估。重要的是,潜在投资者在投资前应进行自己的分析,并在做出任何投资决策之前听取专业人士的独立财务建议。
玻璃纤维增强复合材料 (GFRC) 在现代生活中无处不在。在任何时候,人们可能都站在 GFRC 组件 20 英尺范围内,无论是汽车、船、风力涡轮机还是住宅复合甲板。尽管它们无处不在,但目前处理使用寿命结束时的 GFRC 的方法并不理想。这些复合材料通常最终进入垃圾填埋场,占用大量空间并浪费了在新产品中重复使用这些材料的潜力。近年来,由于社交媒体平台的发展,人们对这一问题的关注度显著提高。风力涡轮机叶片在垃圾填埋场中广为流传的照片是可再生能源产生的罕见垃圾的缩影,也是试图为实际问题寻找真正解决方案的行业的挫折和创新的缩影。如果我们希望继续使用 GFRC,短期内需要采取权宜之计,例如将复合材料倾倒在垃圾填埋场或将废物用作水泥窑的替代燃料。但从长远来看,这些选择并不能为报废复合材料提供生态甚至人道主义负责的解决方案。2019 年,美国能源部向 Carbon Rivers(田纳西州诺克斯维尔)提供了一项小企业创新研究补助金 (SBIR),以探索复合材料循环经济的解决方案,主要关注风力涡轮机叶片。该公司成立于 2017 年,旨在利用
摘要:通过破坏性腐蚀过程来防止具体的恶化,将单个有机化合物或混合物用作有机腐蚀抑制剂(OCIS)而不是无机化学物质正在变得非常有吸引力的实践。由于OCI在生产和环境命运方面对其生态友好,因此与著名的无机添加剂(例如金属亚硝酸盐,铬酸盐或砷酸盐)相比,它们具有多个优势。在本文中,综述了不同的单个有机化合物(自然或合成起源)以及用于延长混凝土结构寿命的混合物的应用。在使用单个有机化合物的使用示例性较小之后,根据其主要功能组,对使用的OCI进行了越来越频繁的OCI。之后,调查了合成或天然起源的化合物混合物,使用天然提取物和生物量的使用。最后,讨论了官能团在前10个抑制剂分子中的效果,OCI的毒性,它们对混凝土物理机械特性的影响以及其长期性能。
病例钢钢通常用于齿轮和轴承应用。这类材料的低碳含量可为不同生产技术(如形成,锻造和焊接)提供出色的加工性。但是,低碳含量限制了这组材料的可靠性。一种特殊的热处理被称为病例硬化,对于提高这些材料的可耐用性是必要的。这种热处理是化石或硝化的,然后进行了亚分化的强化操作以改善表面硬度。渗碳的局限性是该过程耗时,薄壁的零件可能会变形[1]。长时间的时间使这个过程不吸引小批量尺寸的织物。此外,发现仅马氏体结构在材料的耐磨性方面不利[2]。说到耐磨性,仅产品的磨损可能导致多达全国国内生产总值的4%的经济成本[3]。低合金钢的病例硬化主要导致马氏体微观结构,因为几乎所有碳都在马氏体内捕获[4]。调节这些产品通常是为了改善工件的延展性。关于耐磨性,诸如碳化物之类的次级阶段比单纯的马氏体微观结构更优选。为了形成碳化物(VC)或碳化钨(WC)等碳化物,需要超过500℃的高温温度[5]。但是,这些形成碳化物的元素通常不存在或仅在病例钢钢内以较小的比率存在。它们的缺席阻碍了次级碳化物的降水的影响,从而限制了最终部分的耐磨性。因此,需要替代仅碳增强的替代方案,以进一步改善病例钢钢的部分。基于激光的定向能量沉积(DED-LB/M)Pro-VIDESA有望altertantiveto病例硬化,用于调整产品的表面硬度[6]。DED-LB/M中的灵活处理允许生成三维结构,修复磨损的表面或沉积耐磨性覆盖层到高度载荷的表面上。由于可以同时使用DED-LB/m同时使用多种粉末材料,因此可以局部调整最终工件的化学成分[7]。这种高灵活性打开了在需要的情况下在具有量身定制特性的自由形式表面上涂上涂料的可能性。应用的一个潜在领域是将渗碳产品代替仅以小批量制造的大零件。这样做,可以进行长时间的固定时间。DED-LB/M维修应用程序的巨大潜力也使当地磨损的配件进行翻新。使用DED-LB/M进行维修应用,需要产生具有与先前碳液材料相似的材料硬度的硬表面。知道只有固定钢的马氏体硬化产品的前提不利,可以添加进一步的合金元素,以提高关键特性,例如耐磨性或硬度。结合了例如,钨可以帮助改善固醇溶液加强以及高温耐药性的材料的性质[8]。
摘要:在发射环境中,卫星承受着严重的动态载荷。发射环境中的这些动态载荷可能导致有效载荷故障或任务失败。为了提高卫星的结构稳定性并使太空任务可靠地执行,必须有一个减少结构振动的加固结构。然而,对于有源小型SAR卫星,质量要求非常严格,这使得很难应用额外的结构来减振。因此,我们开发了一种碳纤维增强塑料(CFRP)基层压补片,以获得具有轻量化设计的减振结构,以提高S-STEP卫星的结构稳定性。为了验证基于CFRP的补片的减振性能,在试件级别进行了正弦和随机振动试验。最后,通过正弦和随机振动试验对带有所提出的基于CFRP的层压补片的S-STEP卫星的结构稳定性进行了实验验证。验证结果表明,基于CFRP的层压补片是一种有效的解决方案,可以有效降低振动响应,而无需对卫星结构设计进行重大更改。本研究开发的轻量化减振机制是保护振动敏感部件的最佳解决方案之一。
A.许可申请1。提供完全尺寸的图计划以扩展并将其复制到PCIS应用程序图计划表。地块计划应至少提供地块尺寸,街道,小巷,建筑物的位置,一楼剪切元素的位置以及相邻建筑物的位置。有关情节计划所需的项目的全面列表,请参见下面的校正项目B.3。情节计划应用墨水绘制。2。提供完整正确的法律描述(道,地段,块,授予契据)。为申请人,所有者,工程师,建筑师和承包商提供完整的信息。3。完成以下申请项:。4。估值已修改为$。支付$ 5的额外计划支票费。许可证申请必须由财产所有人或许可承包商或授权代理人签署,该许可证将在许可证颁发时签署:
