近年来,人们对人工智能(AI)技术和机器学习(ML)在临床和法医环境中的可能应用已越来越重视。基于知识表示和自动推理(KR&R),模型检查(MC)以及机器(Deep-)学习(ML)的 AI方法已用于开发预测定量模型,例如生物化学反应,人类病理生理学和许多其他领域。 在法医领域,歧视性AI已用于预测侵略风险(Kirchebner等,2020; Gou等,2021; Parmigiani等,2022; Watts et al。,2021),犯罪遗传主义(Tollenaar and van dernaar and van dersense et heijden eftression et heheijden effure Hehijden effure Hehijden effure Hehijden eftists),以及2019年,未来。 2021)。 此外,AI已被用来为量刑,假释,缓刑或预审风险评估的决定提供信息,从而引发了有关公平,问责制和透明度的几个法律和道德问题(Tortora等,2020)。 例如,这些问题是由于发现某些算法包含种族和性别偏见的发现(Barabas等,2018),这一事实可能会被法官和从业者误解和误解,这一事实被法官和从业者误解(Hannah-Moffat,2015年),以及可能促成临时差异(Barabs and Barabs and Barabs and cess and verrab and cy)。 该研究主题旨在介绍有关AI技术在法医心理健康领域的应用,包括有关道德挑战的研究,例如与确保不歧视的需求有关的挑战,“公平过程”,“公平过程”以及决策过程的透明度和理解性的价值。AI方法已用于开发预测定量模型,例如生物化学反应,人类病理生理学和许多其他领域。在法医领域,歧视性AI已用于预测侵略风险(Kirchebner等,2020; Gou等,2021; Parmigiani等,2022; Watts et al。,2021),犯罪遗传主义(Tollenaar and van dernaar and van dersense et heijden eftression et heheijden effure Hehijden effure Hehijden effure Hehijden eftists),以及2019年,未来。 2021)。此外,AI已被用来为量刑,假释,缓刑或预审风险评估的决定提供信息,从而引发了有关公平,问责制和透明度的几个法律和道德问题(Tortora等,2020)。例如,这些问题是由于发现某些算法包含种族和性别偏见的发现(Barabas等,2018),这一事实可能会被法官和从业者误解和误解,这一事实被法官和从业者误解(Hannah-Moffat,2015年),以及可能促成临时差异(Barabs and Barabs and Barabs and cess and verrab and cy)。该研究主题旨在介绍有关AI技术在法医心理健康领域的应用,包括有关道德挑战的研究,例如与确保不歧视的需求有关的挑战,“公平过程”,“公平过程”以及决策过程的透明度和理解性的价值。
背景Woolworths Group的目的是共同创造更好的体验,以度过美好的明天。与我们的目标相吻合,以积极影响我们的星球,我们正在努力使客户更容易通过负责任的方式来源商品,从而为自然和社区带来更积极的成果,从而使客户更容易做出可持续的选择。我们的森林砍伐方法是两个方面,重点是针对我们主要的森林砍伐商品(棕榈油;可可(Cocoa; cocoa; sockfeed incopfeed;牛肉(澳大利亚)和纸,纸浆和木材)和我们的其他商品的净方法,我们的其他商品的方法仍然是poce(咖啡,咖啡,茶,茶)和食物(in-cudue),以及零含量。我们打算以环境和社会负责的方式来采购这些商品,以确保它们是:
埃塞俄比亚高度容易受到气候变化的影响,其影响可以在不同部门之间感受到。特别是森林受到温度上升,降水模式和极端天气事件的威胁。人类活动,例如森林砍伐和土地利用变化,进一步加剧了气候影响,增加了野火的风险,并降低了森林对碳封存的潜力。然而,森林和树木对生态系统和当地社区至关重要,提供动植物栖息地,防止土壤侵蚀,提供足够的水资源,用于燃料和建筑的木材以及各种非木制产品。此外,气候变化越来越多地通过长期和更频繁的干旱来影响水资源,从而导致埃塞俄比亚数百万人的水短缺,作物失败和粮食不安全。同时,不稳定和沉重的降水事件导致洪水和土壤侵蚀的实例增加,进一步损害了水的利用率和质量。以类似的方式,土壤受到气候变化的影响,温度升高和变化的降水模式导致土壤降解和土壤肥力降低,这使小农农民更难将农业作为生计。
[19] Kunin,V.,Copeland,A.,Lapidus,A.,Mavromatis,K。,&Hugenholtz,P。(2008)。宏基因组学的生物信息学指南。微生物学和分子生物学评论,72(4),557-578。[20] Jolley,K。A.,Chan,M。S.,&Maiden,M.C。(2004)。MLSTDBNET分布的多洛克斯序列键入(MLST)数据库。BMC生物信息学,5(1),86。[21] Enright,M。C.和Spratt,B。G.(1999)。多焦点序列键入。微生物学的趋势,7(12),482-487。[22] Healy,M.,Huong,J.,Bittner,T.,Lising,M.,Frye,S.,Raza,S。,&Woods,C。(2005)。通过自动重复序列的PCR键入微生物DNA。临床微生物学杂志,第43(1)期,199-207。[23] Vergnaud,G。和Pourcel,C。(2006)。多个基因座VNTR(串联重复的可变数量)分析。分子鉴定,系统学和原核生物的种群结构,83-104。[24] Van Belkum,A。(2007)。通过多焦点数量的串联重复分析(MLVA)来追踪细菌物种的分离株。病原体和疾病,49(1),22-27。[25] Vergnaud,G。和Pourcel,C。(2009)。多个基因座变量串联重复分析数。微生物的分子流行病学:方法和方案,141-158。[26] Fricke,W。F.,Rasko,D。A.和Ravel,J。(2009)。基因组学在鉴定,预测和预防生物学威胁中的作用。PLOS Biology,7(10),E1000217。[27] Wu,M。和Eisen,J。A.(2008)。95-100)。一种简单,快速且准确的系统基因推断方法。基因组生物学,9(10),R151。[28] Liu,B.,Gibbons,T.,Ghodsi,M。和Pop,M。(2010年12月)。隐式:元基因组序列的分类分析。生物信息学和生物医学(BIBM),2010年IEEE国际会议(pp。IEEE。 [29] Wang,Z。,&Wu,M。(2013)。 门水平细菌系统发育标记数据库。 分子生物学与进化,30(6),1258-1262。 [30] Darling,A。E.,Jospin,G.,Lowe,E.,Matsen IV,F。A.,Bik,H。M.,&Eisen,J. A. (2014)。 系统缩影:基因组和宏基因组的系统发育分析。 peerj,2,e243。 [31] Taberlet,P.,Prud'Homme,S.M.,Campione,E.,Roy,J.,Miquel,C.,Shehzad,W。,&Melodelima,C。(2012)。 土壤采样和细胞外DNA的分离,适用于大量的起始材料。 分子生态学,21(8),1816-1820。IEEE。[29] Wang,Z。,&Wu,M。(2013)。门水平细菌系统发育标记数据库。分子生物学与进化,30(6),1258-1262。[30] Darling,A。E.,Jospin,G.,Lowe,E.,Matsen IV,F。A.,Bik,H。M.,&Eisen,J.A.(2014)。系统缩影:基因组和宏基因组的系统发育分析。peerj,2,e243。[31] Taberlet,P.,Prud'Homme,S.M.,Campione,E.,Roy,J.,Miquel,C.,Shehzad,W。,&Melodelima,C。(2012)。土壤采样和细胞外DNA的分离,适用于大量的起始材料。分子生态学,21(8),1816-1820。
Paulo是包括欧洲委员会,联合研究中心和欧洲环境局在内的几个国际机构的远见与创新的专家和顾问。此外,他在战略情报和场景计划领域与世界经济论坛合作。在过去的15年中,保罗在里斯本大学的利斯本经济与管理学院担任过各种学术职务。他一直在协调研究生计划“远见,战略和创新”,并指导执行计划,例如“场景计划和战略敏捷性”以及“期货,战略设计和创新”。自2020年以来,他一直担任ISEG MBA的执行董事。
布雷默还强调了巴西政府的行动以及有关融资的讨论。“巴西现在有一个领导人,他不是气候怀疑论者,他确实希望该国拥有气候革命。”“这是一个过渡和承认较发达国家资金的责任。所使用的资源数量仍然不接近必要的资源。和巴西需要利用它必须向前推进的领导。
森林是全球碳循环的组成部分。这些生态系统将碳在植物生物量和土壤中隔离。这项研究是在Bhaktapur的Linga Guthi社区森林中进行的,以通过树环分析估算Pinus Roxburghii的碳库存和径向生长。随机放置了总共32个250 m 2面积的圆图。子图用于研究树苗,垃圾,草药和土壤。为了进行树环分析,从不同的森林块中收集了树核心样品。环宽度。用于树环分析,Cofecha和Arstan程序。Linga Guthi社区森林的平均碳库存为272.22±17.36 t/ha。同样,它具有206.87±4.47 t/ha agtc,41.37±2.19 t/ha bgtc,23.814±1.00 t/ha soc。森林的碳固剩速度为2.22 ct/ ha/年。发现森林中松树的平均径向生长为2.06±0.13毫米/年。最大径向生长为4.47 mm/yr。该森林中记录的最古老的树是158年,直径为58厘米。但是,森林的平均年龄为98岁。为从1854年至2013年延伸的松树准备了158年的环宽年表
在2021年2月,超过500名科学家签署了一封公开信,呼吁全球领导人“保存和恢复森林而不燃烧它们”,并强调“再生需要时间,世界不必解决气候变化”。许多森林工人和社区都清楚地表明,木材颗粒植物对森林生态系统和森林行业的就业都有负面影响,呼吁垄断委员会调查,因为Drax垄断了加拿大西部的许多木材颗粒产量。调查报告,纪录片和股东报告都证实,公司越来越多地转向伐木整棵树和主要森林,以提供小吃植物。有宝贵的几年来减少碳排放,以实现全球气候目标,破坏了一些最碳含量丰富的物种关键森林,以产生高度污染的能量,将地球推向了灾难性的气候和生物多样性阈值。
摘要:TikTok 禁令被视为解决国家安全、数据安全、外国干涉、儿童安全和外国间谍威胁的一种方法。在本文中,我们调查了四个禁止或试图管理 TikTok 的国家/地区——澳大利亚、英国、美国和欧盟,并研究了此类限制的政策和法律基础。我们的分析在概念上受到外国干涉和技术主权的法律和政治叙述的影响。我们特别关注现有情报和数据共享协议的国家(即五眼联盟的三个成员和三边 AUKUS 联盟)和欧盟,因为它对数据保护采取了监管方式。这项研究对国际背景下的 TikTok 和外国干涉的地缘政治做出了重大而及时的贡献。它揭示了与外国干涉和数据主权有关的监管和法律方法的不一致之处,而不仅仅是“中国威胁”的叙述。我们认为,欧盟法规提出的方法试图保护公民和公民数据,而不是攻击挑战西方技术霸权的平台和政府。
本说明的目的是概述Kunming-Montreal全球生物多样性框架(KMGBF)以及联合国森林战略计划(UNSPF)及其全球森林目标(GFGS)以及包括其他全球进程,目标,以及包括可持续发展的目标。现有的相似之处可以协助各国在保护,恢复和可持续管理方面的一致计划承诺,并为其国家生物多样性战略和行动计划(NBSAP)(NBSAPS)的精选指标,以衡量全球过程中普遍的领域的进步,从而简化了森林报告的精神。包括Unff,ITTO和FAO在内的森林合作伙伴关系(CPF),以帮助各方实现可持续的森林管理和生物多样性的保护(例如CBD/COP/COP/DE C XLL/6,以及CBD/COP/COP/COP/DEC/DEC/DEC/X/36)。这项评估阐明了相似感兴趣的领域,基于全球目标,目标和指示基于各自计划中开发的全球目标,目标和指示,以及这些目标如何与SDG目标和指标相关联。
