生态学家长期以来已经认识到,生物多样性丧失会导致社区和生态系统特性的时间稳定性降低(Ives&Carpenter,2007; Loreau等,2021; 2021; 2021; 1973; 1973; McCann,2000; McNaughton,2000; McNaughton,1977; 1977; Pimm,1984; Tilman et an; tilman et al。,2014年)。一个重要的特性是总社区生物量,其“稳定性”通常以时间平均值与时间SD的比率进行测量(Donohue等,2016; Hector等,2010; Isbell等,2015; Pennekamp et al。,2018; Tilman et al。,2006)。基于多样性的机制 - 稳定关系 - DSR(DSR)一直是许多生态学的重点(Tilman等,2014)。物种保险理论预测,由于不同物种对环境波动的局部异步响应,更多样化的社区具有更大的可行性,从而导致了综合动态(Lehman&Tilman,2000; Yachi&Loreau,1999)。在更广泛的尺度(例如景观)上,规范保险理论预测,跨空间的物种转换(即β多样性)为区域(γ)稳定性(即,在区域汇总[α]社区的稳定性)促进空间asynchrony(loreau and loreau and loreau et an feang et a an loreau et al et a an e an 201 e and and and and and and a c的稳定)(β多样性);尽管存在广泛的理论基础和对植物的大量陆地研究(Craven等,2018; Hautier等,2014; Liang等,2022),但这些理论在水生和海洋生态系统中的应用仍然是相当的辩论的话题(Hodapp等,20223; Lam; Lam an al and and and and and and and and and and and and and and and and and and and and and and and and and and and。这一差距在理解生物多样性在自然界的稳定作用方面尤其明显,尤其是在底栖生产者和征服者多样性的情况下,可以缓冲从局部到景观量表的急剧环境波动。相对于陆地生态系统,底栖海洋生态系统通常具有较长的食物链,表明具有更复杂的生物相互作用的高度多样性系统(McCauley等,2015)。通常,这种系统更直接地受到更广泛的空间尺度上的环境变化的影响,例如海洋流体动力学(电流,波浪),光的可用性和温度的波动(Miller等,2018)。例如,海洋热浪(延长了异常温水; Hobday等人,2016年)触发了北太平洋营养水平的未经原理的变化
tab le 3的结果摘要比较了UL森林的五种指标物种,比较了untroged(UL)和积极恢复(AR)记录的森林(AR)的平均特征值。特征进行建模,除了叶面营养素外,由于样品的批量,仅使用了物种水平的随机截距。为UL森林提供了平均值和标准误差(SE)值以及AR森林的差异(δ)。与UL森林相比,AR中平均性状值的差异来自数据子集的每个模型,星号代表显着性水平(* <.05,** <.01,*** <.001)。物种平均性状值在表S5中列出。大胆呈现出显着影响。
1 AMAP(植物与植被建筑的植物学和建模),蒙彼利埃大学,Cirad,CNRS,CNRS,Inrae,IRD,IRD,Montpellier,法国; 2 UMR Ecofog(Agroparistech,Cirad,CNRS,Inrae,Antilles,Antilles,圭亚那大学),法国库鲁; 3 Cirad,UMR Ecofog(Agroparistech,CNRS,Inrae,Antilles,Antilles,圭亚那大学),法国库鲁; 4奥地利维也纳维也纳大学微生物和环境系统科学中心; 5佛罗里达州佛罗里达州佛罗里达州佛罗里达州佛罗里达州佛罗里达州佛罗里达州的生物科学系; 6英国牛津大学牛津大学环境变革学院地理与环境学院6; 7 Inrae,洛林大学,Agroparisech,Umr Silva,法国南希; 8奥地利维也纳自然资源与生命科学大学植物学研究所; 9美国马里兰州埃奇沃特市史密森尼环境研究中心; 10森林全球地球天文台,史密森尼热带研究所,巴拿马城,巴拿马和11个布鲁塞尔大学,布鲁塞尔,比利时,布鲁塞尔大学
注意:数字显示了由森林,灌木丛和草原内前八个ravimax旋转的主成分轴捕获的个体和求和变异(请参阅表S5 – S7)。轴命名是基于最密切相关的性状。主要成分分析中包含的植被特征:叶干物质含量,叶氮同位素特征*(叶子三角洲15 n),叶面积*,叶碳含量,叶碳与氮的比例,叶质量干质量,叶干质量,新鲜质量,新鲜质量,叶子氮含量,叶子氮含量,叶片含量,叶子厚度,叶子厚度,叶子厚度,植物丛,植物丛,根部*密度*,茎管直径*,茎特异性密度和茎直径。“*”表示补充分析中包括对单个CWM(图S8A – D)和CWV(图S9A – D)的影响的特征。
注意:数字显示了由森林,灌木丛和草原内前八个ravimax旋转的主成分轴捕获的个体和求和变异(请参阅表S5 – S7)。轴命名是基于最密切相关的性状。主要成分分析中包含的植被特征:叶干物质含量,叶氮同位素特征*(叶子三角洲15 n),叶面积*,叶碳含量,叶碳与氮的比例,叶质量干质量,叶干质量,新鲜质量,新鲜质量,叶子氮含量,叶子氮含量,叶片含量,叶子厚度,叶子厚度,叶子厚度,植物丛,植物丛,根部*密度*,茎管直径*,茎特异性密度和茎直径。“*”表示补充分析中包括对单个CWM(图S8A – D)和CWV(图S9A – D)的影响的特征。
在美国森林和森林中的碳螯合 - 每年约有11%的美国经济范围内温室气体(GHG)的排放量(Domke等,2020),并且最近的研究突出了人们强调的范围,以增强森林在气候Mitiga-tion中的作用,以增强森林在气候中的作用(DREVER等人(Drover et everer等)(Drever et al。,20221;该国东半部的森林在该国的森林碳表片中占有一定的份额。Domke等。 (2020)估计,美国东部31的林地占估价总碳量的约59%,但在2018年提供了48个持续状态的85%的净碳固存(Domke等人,2020年)。 土地使用历史和干扰制度显然在东部森林城市的大小中发挥了作用,而目前的前陆地很大一部分是过去200年中废弃的农业土地的产物,或者在19世纪末和20世纪初期的清晰度较高的情况下恢复率很高。 这导致假设该地区的森林是平均年龄的,并且随着这些森林成熟的生产率和碳固存的速度(例如,Bradford&Kastendick,2010; Hurtt et al。,2002; Turner&Koerper,1995)。 记录是迄今为止东部森林中的主要干扰(Brown等,2018; Canham等,2013),一些研究提出,总收获制度的增加可能会增加森林和森林产品中的净碳固醇(例如Peckham等,Peckham等,2012)。 Keeton等。Domke等。(2020)估计,美国东部31的林地占估价总碳量的约59%,但在2018年提供了48个持续状态的85%的净碳固存(Domke等人,2020年)。土地使用历史和干扰制度显然在东部森林城市的大小中发挥了作用,而目前的前陆地很大一部分是过去200年中废弃的农业土地的产物,或者在19世纪末和20世纪初期的清晰度较高的情况下恢复率很高。这导致假设该地区的森林是平均年龄的,并且随着这些森林成熟的生产率和碳固存的速度(例如,Bradford&Kastendick,2010; Hurtt et al。,2002; Turner&Koerper,1995)。记录是迄今为止东部森林中的主要干扰(Brown等,2018; Canham等,2013),一些研究提出,总收获制度的增加可能会增加森林和森林产品中的净碳固醇(例如Peckham等,Peckham等,2012)。Keeton等。Keeton等。这两个断言都受到挑战,并且是正在进行的辩论的主题(Keeton,2018; Keeton等,2011; McGarvey等,2015; Nunery&Keeton,2010; Rhemtulla等,2009)。(2011)认为,美国东北部的森林有很大的潜力将碳隔离和将碳存储到后期(350 - 400年)。将森林生态系统过程与木材产物生命周期相结合的研究表明,降低收获强度会增加碳的隔离(Gunn&Buchholz,2018; Nunery&Keeton,2010)。也对发展森林生物量能量的发展是美国东北部可再生能源组合的一部分(Milbrandt,2008; Perlack等,2008)。经常被吹捧为固有的“碳中性”能源,但很明显,需要考虑多种因素来评估生物量能量生产的净碳和气候影响(Schulze等,2012; Zanchi等,2012)。为了减少温室气体排放,许多生物能源政策认为,生物能燃烧产生的排放
《巴黎协定》和《欧洲绿色协议》设定了雄心勃勃的气候变化目标。为了实现这些目标并抵消了所有其他部门的排放,在土地使用部门中需要大量的额外碳固存。土地利用部门,尤其是森林从大气中去除二氧化碳的能力是气候变化缓解途径的关键。良好的森林行业与MEA相关的SURES可以显着增加生物量以及收获的木材产品中的碳固存。在我们的研究中,我们调查了使用森林人类生成系统和特定保护状态的森林管理系统和自然保护对匈牙利森林进行类似温室气体库存分析的气候变化效应,并仅考虑生物量池。我们的主要结论是,在相似的产量类别分布记录强度和碳封存并不是成反比的。我们观察到,在较高的记录强度下,未受保护的森林实现了较高的净碳汇。关于森林管理系统,我们观察到在过渡森林管理下的净碳汇水比所有其他管理系统所发现的要高得多。连续的覆盖管理和非生产森林管理并未显示出明显不同的碳通量。
- 测量和监测遗传多样性使我们能够更好地评估物种健康,遗传变异以及跨不同人群(基因流)的遗传变异的交换,以改善生物多样性和自然资源的管理。
中国南部南部林业与技术大学林业与生态应用应用技术实验室,长沙410004,中国B技术保护与恢复盆地的生态保护与恢复技术创新中心,自然资源部,长沙410007,长沙,410007 Haikou 570228,中国E自然科学学院,班戈大学,Gwynedd,LL57 2UW,英国F林业学院,中央南方林业与技术大学,长沙410004,中国G荷兰勘探设计与研究所农业研究所,林业与工业研究所
摘要。Henri,Farhaby AM,Supratman O,Adi W,Febrianto S.2024。 评估印度尼西亚贝利通岛上红树林的物种多样性,生物量和碳库存。 生物多样性25:21-29。 红树林是高产生态系统,可为人和自然提供重要的生态系统服务,包括缓解气候变化。 这项研究分析了印度尼西亚贝利通岛红树林生态系统中的物种多样性,生物量价值和估计的碳库存。 数据收集方法是通过创建由几个圆形子图组成的线性图来执行的。 进行数据分析以确定频率,密度,重要值指数,生物质(地上和地下生物量)和碳含量。 贝利通岛上红树林生态系统的研究结果获得了十种以根瘤菌为主导的红树林,这些红树林在所有研究地点都发现。 在四个位置(> 1,500棵树/公顷)中的红树林密度非常密集。 相比之下,尤鲁·塞伯朗(Juru Seberang)的位置(1,349棵树/公顷)被归类为中度,因为它是先前的造林的位置。 根源含量在树(161.24%)和树苗(149.24%)水平上具有重要的值指数。 贝利通岛上的红树林具有总生物量值(225.08 T HA -1),估计的碳含量(112.54 T C HA -1)和二氧化碳(CO 2)413.02 T CO 2 HA -1的吸收。Henri,Farhaby AM,Supratman O,Adi W,Febrianto S.2024。评估印度尼西亚贝利通岛上红树林的物种多样性,生物量和碳库存。生物多样性25:21-29。红树林是高产生态系统,可为人和自然提供重要的生态系统服务,包括缓解气候变化。这项研究分析了印度尼西亚贝利通岛红树林生态系统中的物种多样性,生物量价值和估计的碳库存。数据收集方法是通过创建由几个圆形子图组成的线性图来执行的。进行数据分析以确定频率,密度,重要值指数,生物质(地上和地下生物量)和碳含量。贝利通岛上红树林生态系统的研究结果获得了十种以根瘤菌为主导的红树林,这些红树林在所有研究地点都发现。在四个位置(> 1,500棵树/公顷)中的红树林密度非常密集。相比之下,尤鲁·塞伯朗(Juru Seberang)的位置(1,349棵树/公顷)被归类为中度,因为它是先前的造林的位置。根源含量在树(161.24%)和树苗(149.24%)水平上具有重要的值指数。贝利通岛上的红树林具有总生物量值(225.08 T HA -1),估计的碳含量(112.54 T C HA -1)和二氧化碳(CO 2)413.02 T CO 2 HA -1的吸收。可持续的沿海生态系统管理可以显着减少土地使用部门的碳排放,并在这些沿海栖息地中维护生态系统服务,考虑到贝利通岛是群岛地区之一。