心电图(ECG)是一种捕获心脏活动的电测量,是诊断心血管疾病(CVD)的金标准。但是,由于ECG需要使用用户参与,因此不可避免地进行心脏监测。相比之下,光电学(PPG)提供了易于收集的数据,但其精度有限限制了其临床用法。为了确定这两个信号的优势,最近的研究不适合将PPG信号重新构成到ECG的各种深度学习技术;但是,缺乏文本信息以及降低噪声生物医学信号的能力最终会限制模型的影响。在这项研究中,我们提出了一种基于变压器的新型体系结构,可从PPG重建ECG,并将PPG和重建的ECG与CVD检测的多种方式相结合。此方法是第一次在生物医学波形重构上进行了变压器序列到序列转换,并结合了PPG和ECG的优势。我们还创建了基于斑块的注意(SPA),这是一种效率方法,用于编码/解码生物医学波形。通过获取各种序列长度并捕获交叉点连接,SPA最大程度地提高了本地特征和全局上下文反复的信号操作。所提出的体系结构在BIDMC数据库上生成了0.29 RMSE的状态性能,以重新构建PPG到ECG,超过了先前的研究。我们还在模拟III数据集上评估了该模型,在CVD检测中达到了95.9%的精度,并在PPG-BP数据集中评估了该模型,在相关的CVD糖尿病检测中达到了75.9%的精度,表明其一般能力。作为一种概念证明,一种名为Pearl(原型)的耳环可穿戴式可穿戴,旨在扩大护理点(POC)医疗保健系统。
重型燃气轮机由于发电率较低,灵活性和热效率而在发电中发挥了越来越重要的作用。在严格的环境条件下,燃气轮机的主要子系统(如压缩机,燃烧器和涡轮机)在运行时间内降低,这在很大程度上影响了系统的效率和生产力。因此,开发有效方法以监测重型燃气轮机的性能降解以进行系统预测性维护,从而提高机器的效率和生产率至关重要。本文提出了一种新的物理知情的机器学习方法,以通过无缝整合热力学热平衡机制,组件特征,多源数据和人工神经网络模型来预测燃气轮机的降解。考虑到流量,质量和能量平衡,建立了基于机制的热力学模型,然后将其集成到系统水平,以在不同条件下对燃气轮机进行性能模拟。系统模型能够有效地模拟那些无法测量的参数的值(例如gt排气流)或不准确测量(例如燃油流)。基于机器学习的数据清洁方法用于预处理燃气轮机的多元原始数据。使用ISO条件下的物理信息模型获得的设计性能数据和校正值之间的差异用于评估性能降解。从
视觉 - 语言变压器(VLT)最近显示出巨大的成功,但同时伴随着大量的计算成本,其中主要原因可以归因于大量的视觉和语言令牌。存在用于压缩VLTS的令牌修剪研究主要遵循基于单模式的方案,但忽略了对齐不同模态来指导令牌修剪过程的关键作用,从而导致重要的代币在另一个模态分支中错误地修剪一个模态。同时,现有的VLT修剪作品也缺乏基于不同输入样本动态压缩每一层的灵活性。为此,我们提出了一个名为M Ultodal的新颖框架,用于加速变化VLT的木质制成d ynamic t ynamic t oken p Runing(MADTP)。具体来说,我们首先引入了精心设计的多模式对齐指导(MAG)模块,该模块可以使相同语义概念的特征与不同的模式相结合,以确保修剪的代币对所有模式都不太重要。我们进一步设计了一种新型的dy-namic令牌修剪(DTP)模块,该模块可以根据不同的输入实例自适应地调节每个层中的令牌压缩比。对各种基准测试的广泛实验表明,MADTP可以显着确定多种模型的计算复杂性,同时保留竞争性能。值得注意的是,当将MADTP应用于NLVR2数据集中的BLIP模型时,可以将GFLOPS降低80%,而性能降低少于4%。该代码可在https://github.com/double125/madtp上找到。
纳米颗粒在接口处。没有纳米颗粒,系统将在系统中发生宏观分离,这两个阶段将根据其密度而定。[5,6] 2000年代初期证明了Bijels生产的第一个程序。第一个实验成功的方法是所谓的热旋缺失分解。[7]在2015年,Haase和同事改善了这种方法,开发了一种导致旋律分解的方法,该方法依赖于从三元混合物中去除溶剂的方法。[8]在这种情况下,将两个易碎的液体与溶剂混合在一起,该溶剂具有使它们相互溶于的能力。将所谓的混合物注入能够提取溶剂的连续相中,其突然去除会诱导两个剩余流体的旋律分解。最近,Clegg Research Group定义了一种越来越简单,更快的生产协议,涉及所涉及的组件之间的直接混合。[9]以这种策略分散到两种不混溶的液体中,需要一些表面活性剂。以这种方式,可以偏爱面部表面的不同局部曲率并稳定结构。与旋律分解不同,这里的比杰尔是通过应用高剪切速率形成的,因此,在初始阶段,产生了二元混合物的液滴。去除剪切物后,粗糙的过程开始将颗粒[1]在接口处捕获[1],直到融合融合为止。最近的Huang等人。同时,表面活性剂施加了液态液接触表面的局部曲率,有助于形成特征性的双连续结构。[1,2,10]仅使用简单的涡流混合简化了生产方法。这样做,他们采用了不同的分子量表面活性剂的组合来稳定不同的局部曲率,以与两个液相之间的界面稳定。在这种情况下,形成比耶尔的唯一必要条件是使用具有不同分子量的聚合物的混合物和足够高的颗粒来形成双连续性的互面膜间堵塞的乳胶凝胶。在最近几年中,比杰尔(Bijels)在许多工业领域表现出了有希望的应用,例如电池,燃料电池和许多其他领域,其中具有控制结构的多相材料引起了任何关注。[11]从医学角度来看,使用Bijels的主要优势居住在可能获得系统
工程纳米材料已成为微电子、航空航天、能源生产和储存、毒理学研究和医学应用等多个领域的深入研究焦点。开发新的表征方法和仪器是推动材料研究和开发的关键因素,从而提高产品性能和可靠性。分析挑战包括分析 10 纳米范围内的微小特征,这导致分析量和检测限之间的权衡。二次离子质谱 (SIMS) 是一种强大的表面分析技术,特别是它能够以出色的灵敏度和高动态范围检测所有元素并区分同位素。SIMS 允许获取质谱、进行深度剖析以及 2D 和 3D 成像。安装在最新一代 FIB 平台上的新型离子源(例如气体场离子源 (GFIS)、Cs + 低温离子源 (LoTIS) 或多物种液态金属合金离子源 (LMAIS))的开发为纳米级物体的分析开辟了新的可能性。在 FIB 仪器中添加 SIMS 功能不仅可以提供最高分辨率和灵敏度的成像,还可以提供在图案化和铣削过程中进行现场过程控制的工具 [1,2]。
海军继续按照美国环保署的同意令(命令号 RCRA-02-2007-7301)开展工作,并遵守《资源保护和回收法案》(RCRA)的规定,推进对现有场地的调查和清理工作。海军每月都会向社区通报计划进行的实地工作。 2016 年 10 月 1 日至 31 日计划开展以下活动和现场工作: • 波多黎各海军活动中心 (NAPR):对整个设施内的标志进行检查和维护活动。 • 固体废物管理单位 3(前基础垃圾填埋场):在垃圾填埋场覆盖层的最后部分安装草坪。 • 固体废物管理单元 7/8(拖车燃料存储区):收集地下水采样事件产生的调查地下水。 • 固体废物管理单位 11/45(38 号楼室内/室外):开始现场活动、直推技术 (DPT) 钻探并采集地下水样本以及安装监测井。 • 固体废物管理单位 71(采石场处置场):开始现场活动、DPT 钻探(采集土壤样本)和试验钻探。 • 固体废物管理部门 68:基础声明的公众意见征询期,可在以下网址查阅:http://go.usa.gov/8mnm。
▪灾难侦察报告,当上传时,它可以快速摘要和信息检索[1]。▪对于特定的知识(例如,F级规模和EF尺度之间的统计关系),需要一些上传文档的提示。3。有关天气和气候模拟大型AI模型中最新进展的全面知识,但直到2023年。
摘要 研究:AI 社会认知评估与建模。评估 LLM 中的心智理论及其在心理学中的应用 NLP:LLM IFT、表征学习(对比和三重态损失)、语义聚类、总结 DL:Transformers、MoE、EncDec、RNNs、DPO、LoRA 工具:Python、Pytorch、Deepspeed、AWS Sagemaker、hydra、SQL 管理:建立 ML 团队、职能、策略和 OKR、招聘和指导科学家和实习生以及建立数据和注释合作伙伴关系。
LIDAR UPSMPLING对于机器人和自动驾驶汽车的启示系统来说是一项艰巨的任务,这是由于大型场景的稀疏结构稀疏和不规则的结构。最近的作品建议通过将LIDAR数据从3D欧几里得空间传播到2D图像空间中的一个超级分辨率问题来解决此问题。尽管他们的方法可以生成具有细粒细节的高分辨率范围图像,但由此产生的3D点云是10个模糊细节并预测无效的点。在此pa-per中,我们提出了郁金香,这是一种从低分辨率激光雷达输入中重建高分辨率激光圈云的新方法。我们还遵循一种基于图像的方法,但特定地修改了基于Swin-Transformer网络的贴片和窗口几何形状,以更好地拟合范围图像的特性。我们在三个公共现实世界和模拟数据集上进行了几项实验。郁金香在所有相关指标中都优于最先进的方法,并且比以前的工作生成了强大,更现实的点云。该代码可在https://github.com/ethz-asl/tulip.git上找到。
定量脑电图和脑电波定量脑电图,有时也称为脑映射,是通过数字技术测量头皮表面的电模式,主要反映皮质电活动或“脑电波”。脑电波以各种频率出现。有些很快,有些很慢。这些脑电图波段的经典名称是 delta、theta、alpha 和 beta。神经反馈是一种生物反馈训练,它使用脑电图 (EEG) 作为控制视觉、听觉或触觉反馈的主要工具。这种反馈用于在大脑中产生学习。这种学习可以提高大脑的适应性和自我调节能力。然而,重要的是,您要了解并同意这种训练过程。一些研究证明,该疗法可有效治疗多种疾病,如注意力缺陷多动障碍 (ADD/ADHD)、焦虑症、抑郁症、自闭症、轻度脑外伤、强迫症等,但其中许多领域仍在进行进一步研究。如果您需要,我可以提供迄今为止的研究书目,或者您可以查阅 www.isnr.org (国际神经反馈与研究学会的网站)以获取全面的神经反馈书目。神经反馈训练是通过使用一种称为脑电图 (EEG) 的灵敏电子仪器来完成的,该仪器可测量个人脑电活动的频率和强度,并立即将此信息发送到高速计算机。这些脑电波信号几乎立即被计算机处理,并以视觉和听觉反馈的形式呈现给个人。然后,临床医生使用复杂的计算机程序帮助患者学习如何使用这种“神经反馈”来识别和更好地调节他们的脑电波模式。对于儿童,计算机程序有时会以游戏的形式出现。通过持续的反馈、指导和练习,患者学会产生所需的脑电波模式。起初,脑电波活动的变化是短暂而短暂的,然而,在相对较短的时间内,新的模式会在与更好的表现和整体健康相关的频率范围内变得更加牢固。一旦患者练习得足够熟练,能够集中注意力并重新调整他们的脑电波模式,训练就结束了。您对神经反馈训练的个人反应或结果无法预测。根据我们的经验,每个人的旅程和结果各不相同,您对该计划的承诺是最重要的方面。我们对您的承诺是提供最好的培训,并公开、诚实地解决您的问题和疑虑。重要的是,我们会定期监测进度并根据需要重新评估,以确定是否应该继续培训。为此,我们将要求您完成频繁的评估,以衡量我们将要跟踪的目标症状。您能否尽可能始终如一地进行这些评估至关重要,因为它提供了有关培训如何影响您的信息,这对您至关重要