摘要:本文解决了香草视觉变压器中与多头自我注意(MHSA)相关的高计算/空间复杂性。为此,我们提出了层次MHSA(H-MHSA),这是一种新颖的方法,以层次的方式计算自我注意力。具体来说,我们首先将输入图像分为通常完成的补丁,每个补丁都被视为令牌。然后,提议的H-MHSA学习本地贴片中的令牌关系,作为局部关系建模。然后,将小斑块合并为较大的贴片,H-MHSA对少量合并令牌的全局依赖性建模。终于,将本地和全球专注的特征汇总为具有强大表示能力的功能。由于我们仅在每个步骤中计算有限数量的令牌的注意力,因此计算负载大大减少。因此,H-MHSA可以在不牺牲细粒度信息的情况下有效地模拟令牌之间的环境关系。与H-MHSA模块合并,我们建立了一个基于层次的变压器网络的家族,即HAT-NET。为了证明帽子网络在场景中的优越性,我们就基本视觉任务进行了广泛的实验,包括图像分类,语义分割,对象titection和实例分段。因此,HAT-NET为视觉变压器提供了新的视角。代码和预估计的模型可在https://github.com/yun-liu/hat-net上找到。
摘要。近年来,自然语言处理领域(NLP)发生了一场革命,文字一代在这一转变中起着关键作用。这种转变不仅限于技术领域,而且还无缝渗透了创意领域,一个很好的例子是歌曲歌词的一代。真正有效的生成模型,例如生成训练的预训练变压器(GPT)-2,需要进行微调作为关键步骤。本文利用了广泛参考的Kaggle数据集的鲁棒性,标题为“歌曲歌词”,仔细探讨了调节三个关键参数的影响:学习率,批处理大小和序列长度。数据集提出了一个引人入胜的叙述,该叙述将学习率视为最有影响力的决定因素,直接影响了产生的歌词的质量和连贯性。在增加批处理大小和扩展序列长度有望增强模型性能的同时,很明显,还有一个饱和点,超出该点的效果受到限制。通过此探索,本文旨在揭开模型校准的复杂世界,并强调战略参数选择在追求抒情卓越方面的重要性。
使用一个野外收集的标本进行测序。DNA提取。根据制造商的说明,使用Illumina Truseq套件构建了配对的测序库。该库是在配对端,2×150 bp格式的Illumina Hi-Seq平台上进行测序的。用三型V0.33(Bolger,Lohse和Usadel 2014)修剪了所得FASTQ文件的适配器/引物序列和低质量区域。修剪序列由黑桃v2.5组装(Bankevich,Nurk,Antipov等2012)随后使用Zanfona V1.0(Kieras 2021)进行完成步骤,以基于相关物种中保守的区域加入附加的重叠群。
与第一个报价有关的风险这是我们公司的第一个公开报价,股票股票没有正式市场。股票股票的面值分别为5卢比。根据我们公司与BRLMS协商确定的平价,价格和要约价格,根据账面建设过程对公平股份的市场需求进行评估,并按照SEBI ICDR法规在第107页的“基础上”中所述,不应被认为是公平股票均等的公平股份,不应被认为是公平股票的列表。对于股票股票的积极或持续交易,也无法就股票股票在上市后交易的价格提供任何保证。
摘要 — 在三相四线低压配电系统中,不平衡负载会导致中性电流 (NC) 形成环路,从而导致功率损耗增加和中性电位变化。与传统电力变压器相比,智能变压器 (ST) 具有严格的电流限制以避免过流。然而,其在下游低压电网电压调节方面的优势可以提供调节过度 NC 的能力。本文提出了一种闭环 NC 优化控制,一方面,在满足标准 EN 50160 要求的正常运行中最小化 NC 电流,另一方面,在极端情况下抑制 NC 电流以避免 ST 过流损坏。根据曼彻斯特地区三相四线配电网,通过硬件在环设置和基于不平衡负载曲线下的 350kVA、10kV/400V、ST 供电配电网的案例研究,通过实验测试验证了所提出的控制策略。结果清楚地证明了所提出的NC优化控制策略对NC抑制和最小化的有效性和灵活性。
急性髓样白血病(AML)是癌症基因组学的原型,因为它是第一个发表的癌症基因组。大规模的下一代/大规模平行的测序工作已经确定了复发的改变,这些变化为预后提供了信息,并指导了靶向疗法的发展。尽管前线发生了变化和复发标准的护理标准,这是由于针对FLT3,IDH1/2和凋亡途径的小分子的成功,同种异体干细胞移植(AllOHSCT)以及由此产生的嫁接 - 与Leukemia(GVL)效应是大多数患者的唯一治愈途径。调节方案,预防疗法,抗感染剂和支持性护理的进展使这种方式可行,即使在患有高龄或医疗合并症的患者中,也可以减少与移植相关的死亡率。因此,复发已经成为移植失败的最常见原因。可能在AllOHSCT之后发生复发,因为残留疾病克隆在移植后持续存在,并从GVL中产生免疫逃脱,或者此类克隆可能会在AllOHSCT后早期迅速迅速增殖,并且超过了供体免疫重建,从而导致复发在任何GVL效应之前。为了解决这个问题,基因组知情的疗法越来越多地纳入移植前的调节中,或者作为移植后维持或预先置换治疗,以设置混合/下降的供体嵌合或可持续的可检测到的可测量可测量的残基疾病(MRD)。There is an urgent need to better understand how these emerging therapies modulate the two sides of the GVHD vs. GVL coin: 1) how molecularly or immunologically targeted therapies affect engraftment, GVHD potential, and function of the donor graft and 2) how these therapies affect the immunogenicity and sensitivity of leukemic clones to the GVL effect.通过最大化分子靶向药物,免疫调节剂,常规化学疗法和GVL效应的协同作用,人们希望改善这种经常蒸发疾病的患者的结局。
使用深层神经网络越来越多地研究了大脑连接与非成像表型之间的关系。但是,在卷积网络设计中通常会忽略大脑白奇网络的局部和全球性能。我们介绍了Tractgraphformer,这是一种混合图CNN-Transformer的深度学习框架,该框架是针对扩散MRI拖拉术的。该模型利用白质结构的局部解剖特征和全局特征依赖性。图形CNN模块捕获了白质的几何形状和灰质连接到从解剖上相似的白色物质连接中汇总局部特征,而变压器模块则使用自我注意来增强全球信息学习。此外,TractGraphFormer还包括一个用于解释预测白质连接的注意模块。在性别预测测试中,TractGraphFormer在大的儿童数据集(n = 9345)和年轻人(n = 1065)中表现出强烈的表现。总的来说,我们的方法表明,WM中的广泛连接可以预测一个个体的性别,并且在两个数据集中确定了一致的预测解剖区。提出的方法突出了整合局部解剖信息和全球特征依赖性的潜力,以通过扩散MRI拖拉术在机器学习中提高预测性能。
• The Realities of the Energy Transition • The Role for Hydrogen in the Energy Transition • The Role of Renewables and Other Energy Sources • The Future Markets for Petrochemicals and Refineries of the Future • Circular Economy - Consumerism & Industry Responses • Emission Reduction - Carbon Dioxide Utilisation (CCUS) • Driving Innovation in a Net Zero World: Key Challenges in R&D • Digital Transformation on the Route to Net Zero • Dialogue on the Energy Future • Dialogue on Energy Security • Alleviating Energy Poverty – Industry Responses for Providing Access to Energy • Access to Capital and Innovative Business Models • Raising Finance during the Energy Transformation – an Investor-Industry Dialogue • Climate Solutions from the Oil and Gas Industry • Untapped Reserves – Driving Diversity in Oil and Gas • Diversity and Inclusion – Focus on Indigenous People • WPC Youth Session - Securing the Next Generation for our Industry • Social责任 - 赢得经营许可
MRI超级分辨率(SR)和Denoising任务是深度学习领域的挑战,传统上被视为具有分隔的配对培训数据的不同任务。在本文中,我们提出了一种创新的方法,该方法使用单个深度学习模型同时解决这两个任务,从而消除了在培训期间对明确配对嘈杂和干净的图像的需求。我们提出的模型主要是针对SR训练的,但在超级分辨图像中也表现出显着的噪声清洁功能。而不是将与频率相关操作引入常规过程的常规方法,我们的新方法涉及使用以频率信息歧视器为指导的GAN模型。为了实现这一目标,我们利用3D离散小波变换(DWT)操作的功率作为GAN框架内的频率结合,用于磁共振成像(MRI)数据的SR任务。特别是我们的分配包括:1)基于残差 - 残基连接块的3D发电机; 2)将3D DWT与1×1卷积的3D DWT集成到3D UNET内的DWT+CORV单元中; 3)训练有素的模型用于高质量的图像SR,并伴随着Intrinsic denoising过程。我们将模型“ deno诱导的超分辨率gan(disgan)”配音,原因是其对SR图像产生和同时降解的双重影响。与传统的培训SR和Deno Task作为单独模型的传统方法背道而驰,我们提出的disgan仅受到SR任务的培训,但在DeNoising方面也取得了出色的表现。我们的代码可用 -该模型经过了来自人类连接组项目(HCP)的数十个受试者的3D MRI数据的培训,并对先前看不见的MRI数据进行了进一步评估,这些MRI数据来自患有脑肿瘤和癫痫的受试者,以评估其denosis和SR性能。