使用深层神经网络越来越多地研究了大脑连接与非成像表型之间的关系。但是,在卷积网络设计中通常会忽略大脑白奇网络的局部和全球性能。我们介绍了Tractgraphformer,这是一种混合图CNN-Transformer的深度学习框架,该框架是针对扩散MRI拖拉术的。该模型利用白质结构的局部解剖特征和全局特征依赖性。图形CNN模块捕获了白质的几何形状和灰质连接到从解剖上相似的白色物质连接中汇总局部特征,而变压器模块则使用自我注意来增强全球信息学习。此外,TractGraphFormer还包括一个用于解释预测白质连接的注意模块。在性别预测测试中,TractGraphFormer在大的儿童数据集(n = 9345)和年轻人(n = 1065)中表现出强烈的表现。总的来说,我们的方法表明,WM中的广泛连接可以预测一个个体的性别,并且在两个数据集中确定了一致的预测解剖区。提出的方法突出了整合局部解剖信息和全球特征依赖性的潜力,以通过扩散MRI拖拉术在机器学习中提高预测性能。
• The Realities of the Energy Transition • The Role for Hydrogen in the Energy Transition • The Role of Renewables and Other Energy Sources • The Future Markets for Petrochemicals and Refineries of the Future • Circular Economy - Consumerism & Industry Responses • Emission Reduction - Carbon Dioxide Utilisation (CCUS) • Driving Innovation in a Net Zero World: Key Challenges in R&D • Digital Transformation on the Route to Net Zero • Dialogue on the Energy Future • Dialogue on Energy Security • Alleviating Energy Poverty – Industry Responses for Providing Access to Energy • Access to Capital and Innovative Business Models • Raising Finance during the Energy Transformation – an Investor-Industry Dialogue • Climate Solutions from the Oil and Gas Industry • Untapped Reserves – Driving Diversity in Oil and Gas • Diversity and Inclusion – Focus on Indigenous People • WPC Youth Session - Securing the Next Generation for our Industry • Social责任 - 赢得经营许可
➢j和l是损失 /错误 /成本功能的通常符号,即< / div>模型预测的内容与根据地面真理预测的内容之间的区别。
安全理事会 1992 年 10 月 6 日第 780 (1992) 号决议要求我设立一个专家委员会,负责审查和分析所收集的信息,以便向秘书长提供关于前南斯拉夫境内严重违反日内瓦四公约和其他违反国际人道主义法行为的证据的结论。1992 年 10 月 26 日,我任命了一个由五名成员组成的委员会,由弗里茨·卡尔斯霍芬教授担任主席,后者辞职后,由切里夫·巴西奥尼教授担任主席。我关于设立专家委员会的报告于 1992 年 10 月 14 日提交安理会 (S/24657)。委员会于 1992 年 11 月开始活动,并于 1994 年 4 月结束工作。在此期间,委员会举行了 12 届会议,并进行了一系列研究和现场调查,为此目的利用了各国政府和非政府组织提供的援助。委员会还建立了一个数据库,旨在全面记录所有已报告的严重违反日内瓦公约和其他违反国际人道主义法的行为。委员会的两份临时报告描述了其工作状况和初步结论,已在我 1993 年 2 月 9 日(S/25274)和 1993 年 10 月 5 日(S/26545)的信中转交给安全理事会。委员会的最后报告包括对委员会自成立以来的工作、任务、结构和工作方法的调查、对前南斯拉夫背景下特别重要的某些法律问题的看法、对“交战派别”军事结构及其所采用的战略和战术的一般性研究,以及对波斯尼亚和黑塞哥维那各地犯下的所谓“种族清洗”、种族灭绝和其他大规模违反基本人道规定的罪行、强奸和性侵犯以及破坏文化财产等罪行的实质性调查结果。
基于变压器的模型已在包括图像超级分辨率(SR)在内的低级视觉任务中取得了显着的结果。但是,在获得全球信息时,基于不重叠的窗口中依赖自我注意的早期aperach遇到了挑战。为了激活全球更多输入像素,已经提出了混合注意模型。此外,通过仅将像素的RGB损失(例如L 1)降至最低而无法捕获基本的高频降低,训练不足。本文提出了两种贡献:i)我们引入了卷积非本地稀疏注意(NLSA)块,以扩展混合变压器体系结构,以增强其接受场。ii)我们采用小波损失来训练变压器模型,以提高定量和主观性能。虽然先前已经探索过小波损耗,但在基于训练变压器的SR模型中显示了它们的力量是新颖的。我们的实验结果表明,所提出的模型在各种基准数据集中提供了状态的PSNR结果以及出色的视觉性能。
亲自代表 PA Consulting Group Ltd(包括母公司、子公司、合作伙伴和客户)游说英国政府或其任何独立机构;您也不应直接或间接地利用您在政府和/或部长办公室的联系来影响政策、获得业务/资金或以其他不公平的方式使 PA Consulting Group Ltd(包括母公司、子公司、合作伙伴和客户)获得优势;● 自您在部长办公室的最后一天起两年内,您不应提供
尽管Vision Transformer(VIT)在计算机视觉方面取得了显着的成功,但由于缺乏内部绘制互动和特征量表的多样性有限,它在密集的预测任务中表现不佳。大多数现有的研究致力于设计视觉特定的变压器来解决上述问题,从而涉及额外的培训前成本。因此,我们提出了一种普通的,无培训的且具有特征增强的vit背骨,并具有指定性的特征性动作,称为Vit-Comer,可促进CNN和Transformer之间的双向相互作用。与现状相比,VIT-COMER具有以下优点:(1)我们将空间金字塔多触发性场卷积特征注入VIT体系结构,从而有效地减轻了VIT中局部信息相互作用和单场表述的有限问题。(2)我们提出了一个简单有效的CNN转换器双向交互模块,该模块在跨层次特征上执行多尺度融合,这对Han-dling密集的预测任务有益。(3)我们评估了在各种密集的预测任务,不同框架和多个高级预训练中VIT-COMER的能力。值得注意的是,我们的VIT-COMER-L在没有额外训练数据的情况下可可Val2017上的AP达到64.3%,而ADE20K Val上的MIOU为62.1%,这两种方法都与最先进的方法相当。我们希望VIT-COMER可以作为密集预测任务的新骨干,以促进未来的研究。该代码将在https://github.com/traffic-x/vit-comer上发布。
通过社交媒体和变形金刚模型了解躁郁症:挑战和见解葡萄etsrivastava*,Lokesh Boggavarapu*,Anthony Shin*,Anthony Shin*,Avisek Datta,Yingda Lu,runa bhaumik **伊利诺伊州芝加哥**伊利诺伊州芝加哥大学的同等贡献者**相应的社交媒体* (BD)仍然显着未充满意。复杂性是由与抑郁和焦虑相关的语言模式的重叠产生的,使准确的识别挑战。本研究旨在基准在Reddit帖子上训练的各种变压器模型的性能,以将BD与其他心理健康状况区分开。使用高性能生成AI模型(GPT-4O)作为基准,分析表明某些开放小型模型(ex。MISTRAL,LLAMA)在捕获与BD相关的微妙语言线索方面表现出色,以高精度和召回率达到高达0.86的F1得分。但是,BD经常被错误分类为抑郁症(23%–51%),正常(2%–41%)和焦虑症(1%–7%),强调了对改进方法的需求。该研究强调了特定于域数据的重要性以及更细微的模型以增强BD检测准确性,为更有效的心理健康监测和及时干预铺平了道路。
近年来,视觉变形金刚(VIT)已成为计算机视觉任务(例如图像分类,对象检测和分割)的强大而有前途的技术。与依赖层次特征提取的卷积神经网络(CNN)不同,VIT将图像视为斑块和杠杆自我发项机制的序列。但是,它们的高计算复杂性和内存要求对资源受限的边缘设备部署构成重大挑战。为了解决这些局限性,广泛的研究集中在模型压缩技术和硬件感知加速策略上。尽管如此,一项全面的审查系统地将这些技术及其在精确,效率和硬件适应性方面进行了对边缘部署的适应性的权衡。这项调查通过提供模型压缩技术的结构化分析,用于推理边缘的软件工具以及VIT的硬件加速策略来弥合此差距。我们讨论了它们对准确性,效率和硬件适应性的影响,突出了关键的挑战和新兴的研究方案,以推动Edge平台上的VIT部署,包括图形处理单元(GPU),张量处理单元(TPU)(TPU)和现场编程的门阵列(FPGAS)。目标是通过当代指南,以优化VIT,以在边缘设备上进行有效部署,以激发进一步的研究。
近年来,视觉变形金刚(VIT)已成为计算机视觉任务(例如图像分类,对象检测和分割)的强大而有前途的技术。与依赖层次特征提取的卷积神经网络(CNN)不同,VIT将图像视为斑块和杠杆自我发项机制的序列。但是,它们的高计算复杂性和内存要求对资源受限的边缘设备部署构成重大挑战。为了解决这些局限性,广泛的研究集中在模型压缩技术和硬件感知加速策略上。尽管如此,一项全面的审查系统地将这些技术及其在精确,效率和硬件适应性方面进行了对边缘部署的适应性的权衡。这项调查通过提供模型压缩技术的结构化分析,用于推理边缘的软件工具以及VIT的硬件加速策略来弥合此差距。我们讨论了它们对准确性,效率和硬件适应性的影响,突出了关键的挑战和新兴的研究方案,以推动Edge平台上的VIT部署,包括图形处理单元(GPU),张量处理单元(TPU)(TPU)和现场编程的门阵列(FPGAS)。目标是通过当代指南,以优化VIT,以在边缘设备上进行有效部署,以激发进一步的研究。