人工智能:欧洲和罗马尼亚初创企业格局概述及其决定其成功的因素 Adina SĂNIUȚĂ 国立政治研究和公共管理大学 6-8 Povernei St., Sector 1, 012104 布加勒斯特,罗马尼亚 adina.saniuta@facultateademanagement.ro Sorana-Oana FILIP 罗马尼亚 sorana.filip@gmail.com 摘要 人工智能 (AI) 已融入我们生活的许多方面;在技术驱动的时代,企业使用人工智能来提高生产力,更好地了解消费者行为或通过机器人提供服务。基于 Filip (2021) 为论文进行的在线桌面和试点研究,该研究概述了欧洲和罗马尼亚初创企业的格局以及决定其成功的因素,如产品开发核心团队专业知识、核心团队承诺和业务战略。该研究旨在为进一步的论文创建一个框架,该论文将深入研究罗马尼亚的人工智能初创环境,因为经济期刊预测,鉴于罗马尼亚在这一领域的潜力以及 IT、技术和机器人领域的人才库,该市场将在不久的将来增长。关键词人工智能;初创企业;成功因素。介绍人工智能的一般性讨论人工智能 (AI) 有多种形式,从人脸检测和识别系统、搜索和推荐算法到数字助理、聊天机器人或社交媒体。它的复杂性和动态性很难用一个定义来概括 (Zbuchea、Vidu 和 Pinzaru,2019)。据统计,到 2024 年,全球人工智能市场规模预计将达到 5000 亿美元(Statista,2021a),预计人工智能软件市场收入将达到 3275 亿美元(Statista,2021b)。尽管人工智能在过去几年似乎发展迅速,普及度不断提高,但人工智能的历史可以追溯到 20 世纪 50 年代,当时这一概念诞生于科学家、数学家和哲学家的头脑中。艾伦·图灵是第一个对这一主题进行广泛研究的人,他在他的论文“计算机器和智能”中描述了人工智能一词,以及它的构建和测试(Anyoha,2017,第 1 页)。随着图灵测试的引入,他
摘要:过去二十年来在数字平台上出现的超级目标广告现在被更有效地理解为调整广告,这是一个充满活力且不断发展的过程,在该过程中,广告在实时对用户进行了不断地“优化”广告。在Rieder和Hofmann(2020)之后,我们旨在为“观察练习”算法调整的数字广告制定一个框架。我们借鉴了澳大利亚广告天文台的研究以及关于数字酒精广告的多年研究项目。在这些项目中,我们构建了自定义的工具,以从平台广告库中收集广告,并通过公民科学家的数据捐赠。我们认为,数字广告的力量越来越符合其调整的能力。平台的广告透明度工具引起了我们对广告的关注,但是我们需要发展能够观察动态的社会技术调整过程的能力。我们概念化了广告的“调谐序列”的可视化,作为广告“库”的替代方法。我们认为,开发观察这些调谐序列的能力更好地阐明了建立公众理解和问责制所需的观察方式,他们都在寻找公众的理解和问责制。
摘要 — 水下回声测深仪是水面和水下舰艇声纳套件不可或缺的一部分。这些系统通过提供船体龙骨和海底之间的实时距离来确保舰队的安全作业。本文我们报告了一种用于舰队舰艇的具有出色声学参数的浅水回声测深仪的设计和开发。原型回声测深仪的峰值发射电压响应 (TVR) 为 170 dB,接收电压灵敏度 (RVS) 为 –187 dBV/µPa,电阻抗为 193 Ω。此外,这种声学换能器的设计具有通过控制传感器几何形状来调整工作频率的灵活性。这种灵活性确保了对工作频率的控制和根据要求进行定制。关键词:浅水回声测深仪、PZT、单波束、声学匹配层、水文
摘要 本文分析了2000年至2015年期间政治变量在45个新兴市场和低收入经济体实施结构性税收改革中的作用。现有文献确定了几种推动改革的假设,但缺乏支持这些假设的实证研究。依靠一个新的结构性税收改革数据库和二元模型,我们的结果表明,左翼政府不太倾向于实施税收改革,而距离选举还有政治实力或凝聚力都与税收改革呈正相关。左翼政府在低收入经济体的影响力比在新兴市场经济体更大,这类政府最抵制税收管理改革。距离选举似乎会引发个人所得税(PIT)改革,但对贸易税改革则相反。政治凝聚力是改革大多数税种和税收管理的必要因素。JEL:C33,C36,D63,E32,E62,H20 关键词:财政政策;二元选择模型;税收改革;选举 政治分裂 意识形态
半导体材料为量子技术 (QT) 提供了一个引人注目的平台。然而,在众多候选材料中识别出有前途的材料主体是一项重大挑战。因此,我们开发了一个框架,使用材料信息学和机器学习方法自动发现用于 QT 的半导体平台。我们实施了不同的方法来标记数据,以训练监督机器学习 (ML) 算法逻辑回归、决策树、随机森林和梯度提升。我们发现,完全依赖文献研究结果的经验方法会明显区分预测的合适和不合适的候选材料。与文献中将带隙和离子特性作为 QT 兼容性的重要特性的预期相反,ML 方法强调了与对称性和晶体结构相关的特征,包括键长、方向和径向分布,因为这些特征在预测材料是否适合 QT 时很重要。
关于FDP:有关人工智能(AI)的教师发展计划(FDP),用于计算机视觉,医学成像应用将帮助教育者和研究人员了解AI基础知识及其如何应用于具有多个安全应用的医学成像技术。参与者将探索机器学习和深度学习概念,专注于使用AI进行医学成像,这有助于诊断,医疗保健,农业,零售和监视系统。AI通过基于面部识别,虹膜识别,指纹分析和语音识别的准确有效的身份验证方法,在计算机视觉中起关键作用。通过实践活动和实例实例,与会者将获得实用技能,可以在教学和研究中有效地使用不同的AI使用AI。在计划结束时,参与者将准备将AI工具集成到他们的工作中,提高他们通过现代技术教授和解决安全挑战的能力。这将通过增强他们在这些关键领域的专业知识和教学能力来使参与者受益。主要课程内容:针对计算机视觉应用程序的最新实施介绍。机器学习基础知识,使用数据预处理和数据可视化。监督和无监督的学习方法,SVM分类,神经网络和应用程序。深度学习方法的简介和基于DL的其他架构及其应用程序。用于计算机视觉,生物特征和医学成像实现的深度学习体系结构。使用Python/Matlab的动手会话。医学图像数据处理和分析。用于生物医学成像,基于CT扫描/MRI的图像分析,眼底和医学图像分类的AI/ML。对象检测/跟踪算法(例如Yolo等),诸如UNET等分段算法等使用张量流/Pytorch识别人类活动/动作/生物识别识别张量流/keras/pytorch/jupyter和colab的基础知识。使用Python/Matlab使用数据预处理和数据可视化。CV和AI算法在硬件平台上实现,例如Jetson Nano,TX2和Pynq等。主持此计划的教师:该计划将由Nit Warangal的教职员工进行;邀请来自IIT/NIT/IIIT的有关领域的院士在该计划中发表讲座。也有望作为课程的一部分提供行业的演讲者。
(或)Sahir Kumar Samanta M.pharm。,Ph.D(J.U.)校长B. C. Roy博士药学院和AHS Durgapur,西孟加拉邦-713206 B. C. Roy
Brian Drake 是国防情报局未来能力与创新办公室的人工智能主任。他领导该机构的人工智能研究和开发投资组合。作为一名分析师,他领导多个团队应对来自国家和非国家行为者的威胁,涉及技术、反情报和禁毒主题。他曾担任德勤咨询公司的经理和托夫勒联合公司的管理顾问,专门为商业和政府客户提供战略规划、业务发展、合作咨询、技术和创新服务。他还曾担任系统规划和分析公司的军事平台和政策分析师以及 DynCorp 的核武器计划分析师。他拥有默瑟大学的文学学士学位和乔治城大学的硕士学位。除了他的官方职责外,他还是国防情报纪念基金会的总裁兼首席执行官;为阵亡国防情报官员的子女设立的奖学金基金。
空间实验在技术上具有挑战性,但是天文学和星体化学研究的科学重要组成部分。国际空间站(ISS)是一个非常成功且持久的研究平台的太空实验的一个很好的例子,在过去的二十年中,它提供了大量的科学数据。但是,未来的太空平台为进行实验提供了新的机会,该实验有可能解决天体生物学和星体化学领域的关键主题。从这个角度来看,欧洲航天局(ESA)主题团队天文学和星体化学(带有更广泛的科学社区的反馈)确定了许多关键主题,并总结了2021年的“ ESA Scispace Scipace Science Community Community Community White Paper”《天体生物学和星体化学》。我们重点介绍了未来实验的开发和实施的建议,讨论原位测量,实验参数,暴露场景和轨道的类型,以及确定知识差距以及如何提高目前正在开发或高级计划阶段的未来太空曝光平台的科学利用。除了国际空间站外,这些平台还包括立方体和小萨特人,以及较大的平台,例如月球轨道门户。我们还为月球和火星上的原位实验提供了前景,并欢迎新的可能性支持搜索我们太阳系内外的系外行星和潜在的生物签名。