Annex 70 Building Energy Epidemiology: Analysis of Real Building Energy Use at Scale: Martin Jakob ( martin.jakob@tep-energy.ch ), TEP Energy Annex 72 Assessing Life Cycle Related Environmental Impacts Caused by Buildings: Rolf Frischknecht ( frischknecht@treeze.ch ), Treeze Annex 75 Cost-effective District Level Building Renovation Strategies with Energy Efficiency and Renewables: Roman Bolliger(roman.bolliger@econcept.ch),Econcept Annex 79以乘员为中心的建筑设计和操作:Arno Schlueter,ETH; Dusan Licina,EPFL; Dolaana Khovalyg,EPFL附件82 Energy柔韧的建筑物,朝着弹性的低碳能源系统:FHNW的Monika Hall;罗马·鲁德尔(Roman Rudel),supsi; Kristina Orehounig,Empa附件83正能量区:Zhang,PSI - 热抽水技术(HPT TCP):Elena-LaviniaNiederhäuser,Stephan Renz(椅子)
与游轮的合作伙伴关系,尤其是与具有HX这样的探险人物的人| Hurtigruten Expeditions提供了一个独特的机会,可以在全球范围内收集重要的海洋数据。由于这些船只驶过遥远和未触及的海洋地区,因此它们具有移动研究站的装备且可用。通过将特殊的科学仪器整合到船上,您可以连续监测重要的海洋变量,例如水温,盐含量,氧气含量,二氧化碳浓度以及微塑料以及重要的大气气候变量,例如微量气和气溶胶等重要的气候变量。与HX合作的最重要优势之一是,有可能收集有关大型海洋领域的广泛数据,这些数据通常很难通过传统的研究船进入。各种合适的技术,例如EDNA采样和浮游植物监测,还有助于评估海洋的生物学多样性和生态系统的健康,以了解海洋在气候中的作用并改善海洋预测。及其常规和不同路线的巡航船可以在较长时间内持续提供数据,从而有助于长期环境监视和海洋知识。这种方法通过使用已经在偏远区域中的现有船舶来优化资源。除了在HX船上的旅游计划外,弗里德乔夫·南森(Fridtjof Nansen)16岁之间2024年5月和18日通过将它们转换为数据采集平台,我们最大程度地减少了对其他研究探险的需求,并使过程更具成本效益和环保。另一个优势是可以体验正在进行的科学研究并在旅行中参与的乘客的教学收益。这有助于提高人们对海洋监测的重要性以及保护海洋,使旅游与可持续实践和整个社会的影响和谐相处的努力的认识。2024年9月进行了一项科学计划(Tidal -HX01:从机会平台中试用创新数据获取 - HX船只MS Fridtjof Nansen)。根据加拿大温哥华(加拿大)的Reykjaviek(冰岛)路线如图1.1所示。船上的程序包括海洋和大气中的化学,气象,物理和生物测量。这次探险为AWI研究计划POF IV做出了贡献,主题1、2和6。这艘船上的测量结果是作为“ SOOP - 塑造可能性海洋”的一部分进行的。SOOP(https://www.sop-platform.earth/)是创新平台之一,这是Helmholtz-
•部门和我们的大学教学周的结构化入职•家庭和通过自定义的工作兼容,具有较大的内容和时间范围,我们的报价是“审计家庭友好型大学”的一部分•国际面向教学和研究项目(例如B. U! Reka European University) • Support in the creation of your national and international research requests by our department "Research, Innovation and Transfer- Fit" • A living campus in the heart of Europe with an extensive sports and event program (campus sports, campus culture) • A free state ticket Hesse and good transport connection (public transport), bicycle friendliness (u. a.
暴露表面上的微生物生命是节俭且具有合作精神的。岩石中的黑色真菌、绿藻和蓝藻互相帮助,征服岩石、墙壁、纪念碑、屋顶、外墙和太阳能电池板。黑色真菌是重要的岩石破坏者和生物膜形成者。它们厚重的细胞壁和缓慢的生长使它们具有抗压力的能力,同时也给实验研究带来了挑战。在材料研究中,生物膜可能是理想的,也可能是不理想的。建筑外墙上的生物膜可以对城市内部的气候产生积极影响,但却不受欢迎出现在大理石纪念碑上。如果不深入了解适应性的微生物,就不可能控制它们,也不可能对材料进行有针对性的促进。这是遗传学和材料研究的交汇点:CRISPR-Cas9 技术可以编辑真菌基因组以进行功能分析,从而揭示材料定植和材料损伤的机制。
Christoph Kühn:通过这个项目,网络机构正在推动高风险研究。我认为,如果没有网络机构的项目资金,就不可能对这些主题进行如此深入的研究,特别是在公司和初创企业,也包括在依赖第三方资金的大学。这正是网络局成立的原因:确保德国在网络安全及其关键技术方面的主权。 2024年,联邦国防部长决定将CIR建制区转变为武装部队的一个军种。建制区“仅仅”起支援作用,而武装部队的一个兵种则可以在特定区域开展军事行动并承担责任。这清楚地表明,网络和信息空间(CIR)是一个存在争议且必须予以保卫的军事领域。
CRC PolyTarget CRC PolyTarget 的目标是开发治疗感染引发的炎症状态的新策略,以合理设计量身定制的纳米颗粒药物载体为中心。利用基于功能性合成聚合物和(改性)生物聚合物的药理活性纳米颗粒,并对其进行表征,从下至上解决靶向纳米药物的基本问题。基于聚合物库的建立以及纳米颗粒的详细分子和形态表征,研究结构-性能关系,以优化纳米颗粒的生物和药学功能。