气候变化是对人类有史以来人类健康和福祉的最大威胁。人类活动正在推动大气热捕获温室气体的水平增加(即温室气体,即二氧化碳,甲烷,一氧化二氮和氯氯氟此),从而导致全球温度的大幅增长。全球温度的升高已经在引起广泛的生态变化,包括极端天气事件的频率和严重程度(热浪,野生矿场,流量和干旱),海平面上升以及动植物的季节性转移以及动物地理范围的季节性转移以及动物地理范围和生长的季节,这些季节破坏和危害了许多人的健康和生命。通过影响我们呼吸的空气,我们吃的食物以及我们喝的水,与气候变化相关的生态影响将恶化并威胁到人类的存在。因此,我们必须采取措施防止与化石燃料相关的排放相关的进一步丧失生命。
摘要。这项工作旨在回顾人工神经网络 (ANN) 的最典型实现,这些实现在前馈神经网络 (FNN) 和循环神经网络 (RNN) 中实现。讨论了 ANN 架构和基本操作原理的本质区别。学习过程的问题分几个部分介绍。使用 ANN 进行预测的优势已在自适应教育学、医学和生物学分类、工业等多个热门领域得到证实。JEL:C45。关键词:人工智能;人工神经网络;前馈神经网络;循环神经网络;感知器。引用:Alytis Gruodis (2023) 人工神经网络在过程建模中的实现。当前实现概述。– 应用业务:问题与解决方案 2(2023)22–27 – ISSN 2783-6967。https://doi.org/10.57005/ab.2023.2.3
1 研讨会于 2023 年 7 月在阿姆斯特丹大学举行。更全面的建议版本将在即将发表的文章中发表。我们感谢各位参与者在研讨会期间和之后的宝贵意见(参加研讨会并不等于认可下文列出的所有建议):Bettina Berendt 博士(柏林工业大学互联网与社会教授)、Ian Brown 博士(里约热内卢热图利奥·瓦尔加斯基金会法学院技术与社会中心客座教授、顾问)、Nick Diakopoulos 博士(西北大学传播学和计算机科学教授(特聘))、Tim de Jonge(拉德堡德大学博士候选人)、Christina Elmer(多特蒙德大学数字新闻/数据新闻教授)、Natali Helberger 博士(阿姆斯特丹大学杰出法学与数字技术大学教授)、Clara Helming(AlgorithmWatch 高级政策与宣传经理)、Karolina Iwańska(欧洲非营利组织中心数字公民空间顾问)法)、Frauke Kreuter 博士(慕尼黑大学统计与数据科学教授)、Laurens Naudts 博士(阿姆斯特丹大学法学博士后研究员)、Liliane Obrecht(巴塞尔大学法学博士生)、des 博士。 Angela Müller(AlgorithmWatch 政策与宣传主管)、Estelle Pannatier(AlgorithmWatch CH 政策与宣传经理)、Stanislaw Piasecki 博士(阿姆斯特丹大学法学博士后研究员)、João Quintais 博士(阿姆斯特丹大学信息法助理教授)、Matthias Spielkamp(AlgorithmWatch 创始人兼执行董事)、Daniel Oberski 博士(乌得勒支大学健康数据科学教授)、Ot van Daalen 博士(律师;阿姆斯特丹大学信息法讲师和研究员)、Kilian Vieth-Ditlmann(AlgorithmWatch 政策与宣传副团队负责人)、Sophie Weerts 博士(洛桑大学公法副教授)、Frederik Zuiderveen Borgesius 博士(拉德堡德大学 ICT 和法律教授)。此外,我们感谢以下专家对研讨会成果的宝贵书面反馈:Nikolett Aszódi(AlgorithmWatch 政策与宣传经理)、Paul Keller(Open Future 政策总监)和 Alex Tarkowski(Open Future 战略总监)。
酰基辅酶-A结合蛋白(ACBP),也称为地西epam结合抑制剂(DBI),是食欲和脂肪生成的有效刺激剂。生物信息学分析与系统筛选结合表明,过氧化物酶体增殖物激活的受体伽马(PPARγ)是转录因子,最能解释了包括肝脏和脂肪组织在内的代谢活性器官中的ACBP/DBI上调。PPARγ激动剂罗格列酮诱导的ACBP / DBI上调以及体重增加,这可以通过小鼠中的ACBP / DBI敲除。此外,PPARG的肝脏特异性敲低阻止了高脂饮食(HFD)诱导的循环ACBP/DBI水平上调,体重增加降低。相反,ACBP / DBI的敲除阻止了HFD诱导的PPARγ上调。Notably, a single amino acid substitution (F77I) in the γ 2 subunit of gamma-aminobutyric acid A receptor (GABA A R), which abolishes ACBP/DBI binding to this receptor, prevented the HFD-induced weight gain, as well as the HFD- induced upregulation of ACBP/DBI, GABA A R γ 2, and PPAR γ .基于这些结果,我们假设依靠ACBP/DBI,GABA A R和PPARγ的肥胖前馈环的存在。在任何水平上的中断,都无法区分地减轻HFD诱导的体重增加,肝脏toposisos和高血糖。
准确的分子特性预测对于药物发现和计算化学至关重要,促进了有希望的化合物并加速治疗性发育的鉴定。传统的机器学习以高维数据和手动特征工程的速度失败,而现有的深度学习方法可能不会捕获复杂的分子结构,而留下了研究差距。我们引入了深CBN,这是一个新型框架,旨在通过直接从原始数据中捕获复杂的分子表示来增强分子性质预测,从而提高了准确性和效率。我们的方法论结合了卷积神经网络(CNN)和biforter注意机制,同时采用了前向算法和反向传播。该模型分为三个阶段:(1)功能学习,使用CNN从微笑字符串中提取本地特征; (2)注意力完善,通过向前前锋算法增强的Biforter模块捕获全球环境; (3)预测子网调整,通过反向传播进行微调。对基准数据集的评估 - 包括TOX21,BBBP,SIDE,Clintox,Clintox,Bace,HIV和MUV,表明深-CBN达到了近乎完美的ROC-AUC分数,显着超过了最好的State-Art-Art方法。这些发现证明了其在捕获复杂分子模式的有效性,提供了一种强大的工具来加速药物发现过程。
罗马2025年2月28日。政府今天早些时候在罗马同意了筹集保护生物多样性所需的资金并实现Kunming-Montreal全球生物多样性框架(KMGBF)所需的资金,使联合国生物多样性会议的业务使COP16在2024年在哥伦比亚悬挂在COP16,于2024年取得了成功。《生物多样性公约》的当事方进入了清晨,以敲定有关生物多样性财务,计划,监测,报告和审查的协议,以及衡量全球和国家进步的全套指标,以实施KMGBF,在2022年在COP 15中在蒙特利尔达成的KMGBF。“这些天在罗马的工作已经证明了当事方对全球生物多样性框架的实施的承诺。警察16总统承认达成共识的集体努力,这些问题在卡利列出了关键问题。“我们感谢所有国家和公约秘书处继续加强全球生物多样性议程的意愿。只有通过共同努力,我们才能使自然和平成为现实。” “这次会议的结果表明,多边主义有效,是建立保护生物多样性所需的伙伴关系的工具,并使我们与自然和平相处。”“我们现在有明确的任务要求实施第21和39条。当我们这样做并实施资源动员的其他支持元素时,世界将为自己提供缩小生物多样性融资差距的手段。”
有效和宽带向前散射对于元原子来说是重要的。强的竞争者包括具有定制多极含量的胶体纳米镜,以达到抑制后散射的适当干扰。我们考虑了由一百多个银纳米斑点组成的密集的等离子球。数值模拟提供了对多极矩在散射行为中起作用的作用的充分理解。它们是使用乳液干燥制造的,并具有光学特征。在整个可见范围内证明了强度和有效的前向散射。具有相等振幅和相位的电和磁偶极子共振。这种等离子球可以用作底部跨表面应用的元原子。
难以区分的混淆(IO)已经取得了显着的理论进步,但是由于其高复杂性和效率低下,它仍然不切实际。最近的IO方案中的一种常见瓶颈是依赖自动化技术从功能加密(Fe)到IO中的依赖,该技术需要递归地调用每个输入位的Fe加密算法,这是为实用IO方案的重要障碍。在这项工作中,我们提出了钻石IO,这是一种新的基于晶格的IO结构,它用轻量级的矩阵操作代替了昂贵的递归加密过程。我们的构造在学习中被证明是安全的(LWE)和回避的LWE假设,以及我们在伪甲骨文模型中的新假设(All-Product LWE)。通过利用Agrawal等人引入的伪随机功能的Fe方案。(eprint'24)在非黑色盒子中,我们消除了对先前的Fe-io bootstrapping技术的依赖,从而显着降低了复杂性。剩下的挑战是将我们的新假设减少到LWE等标准的标准,进一步促进了实用和合理的IO构造的目标。
Serge Mignani* a,b , Xangyang Shi* c,b , João Rodrigues* b , Helena Tomas, b Andrii Karpus d,e , 和 Jean-Pierre Majoral* d,ea 巴黎笛卡尔大学,PRES Sorbonne Paris Cité,CNRS UMR 860,化学、生物化学和药理学实验室,45 des Saints Peres,75006 Paris,法国 b CQM - 马德拉化学中心,MMRG,马德拉大学,Campus da Penteada,9020-105 Funchal,葡萄牙,205 route de Narbonne,31077,Toulouse Cedex 4,法国 e 图卢兹大学 118 route de Narbonne,31077 Toulouse Cedex 4,法国施晓玲: xshi@dhu.edu.cn; JP。马约拉尔(Majoral):majoral@lcc-toulouse.fr; J. Rodrigues: joaor@uma.pt