通过 MILBUS-1553 与平台通信接口 通过 10 个内部开发的 ASIC(CRISA SECOiAs)控制和监控 >200 个锁存电流限制器作为分配模块 通过串行链路(UART)控制和监控 >40 个 DCDC 转换器 内部模拟遥测 OV 和 UV 保护 高速数据监控(HRDM)可捕获配置的最多 8 个 TM 通道数据速率直至完成 2Mbits 数据(125 Ksamples) 每个 DHS 板的 RTAX2000S @ 40 MHz LCL 板:
TPS7H4001-SP 和 TPS7H4003-SEP 是集成 FET 的高电流 (18 A) 降压转换器,其主要特性是能够并联最多 4 个相位相差 90 度的器件,而无需外部时钟,旨在满足核心轨道上对更高电流日益增长的需求。0.6 V 基准电压使它们能够满足此轨道通常的低电压要求。TPS50601A-SP 是一款较小的 6 A 高效降压转换器,拥有十多年的实际使用经验,用于为许多辅助轨道供电。封装兼容的 TPS7H4002-SP 也可用于为辅助轨道供电,因为它在架构上与 TPS50601A-SP 非常相似,但电流限制较低,适合较小的电感器尺寸。对于类似的 6 A 抗辐射设计,TPS7H4010-SEP 在 4×6 mm WQFN 封装中提供了极其紧凑的设计,并且是 32 V in 下空间级开关稳压器中最宽的 V 值。
印度喀拉拉邦卡达曼尼塔 Mount Zion 工程学院应用电子与仪器工程系助理教授 摘要:自适应滤波是一个重要的信号处理领域,广泛应用于通信、控制和生物医学工程领域。自适应噪声消除、数据传输信道的自适应均衡和自适应天线阵列就是此类应用的一些示例。自适应滤波由一个数字滤波器组成,该滤波器的权重由自适应算法控制,从而最小化滤波器输出与符合某些标准的参考信号之间的差异。参考信号的特性取决于所考虑的应用。评估自适应滤波器性能的主要指标有两个:收敛速度和稳态均方误差。在实际应用中,希望最大化收敛速度并最小化稳态均方误差。这些要求之间存在冲突。已经开发了几种自适应算法,以便在这些要求之间取得良好的折衷。重要的自适应算法是样本矩阵求逆 (SMI)、最小二乘 (LS) 和递归最小二乘 (RLS) 算法。本项目的主要目标是使用 Xilinx 系统生成器实现 LMS 和 RLS(递归最小二乘)自适应滤波器算法。将在 Matlab 和 Simulink 中对模型进行仿真,以有效验证算法。核心 RLS 和 LMS 自适应滤波器及其基本组件块将在 Xilinx 系统生成器中开发,并在 Xilinx FPGA 中实现。关键词:最小均方算法 (LMS)、递归最小二乘算法 (RLS)、Xilinx 系统生成器 (XSG)、simulink、Spartan -3 1. 简介自适应滤波器是 DSP 应用中的重要组成部分,其中输入信号的统计数据未知或正在变化。自适应滤波器依靠递归算法进行操作,这使得滤波器在无法完全了解相关信号特性的环境中也能令人满意地执行。已经开发出多种自适应算法来操作自适应滤波器。自适应算法用于人类活动的许多领域。在过去的 50 年里,已经设计、描述和实施了许多自适应算法。它们在硬件设备或软件程序中实现,以在应用或其环境中的未知或随时间变化的条件下调整系统行为参数。更具体地说,在控制和数字信号处理 (DSP) 系统中,它们用于根据传入信号和系统环境改变控制器或滤波器的行为。自适应算法在这些领域中最常见的应用是系统识别、噪声和回声消除以及信号增强。其中有一些用于调整权重的算法,包括 LMS(最小均方)和 RLS(递归最小二乘)。标准或改进的 LMS 算法通常用于 DSP 应用中,其中最多可调整数百个参数。LMS 算法的主要优点是其简单性,因此它们的实现在计算上很简单,计算复杂度为 O(n)(换句话说,它们很快)。另一方面,它们的主要缺点是速度慢
为了用于商业航空运输,飞机需要获得由主管部门颁发的证书,以确认其符合所有适用的适航要求。认证是认证机构对飞机及其系统和设备符合要求的法律认可。具体而言,认证涉及设计评估过程,以确保其符合适用于该类产品的一套标准,从而证明其安全水平可接受。民用飞机认证是飞机制造商、系统设计者、LRU(或设备,包括硬件和软件)供应商(或申请人)和认证机构共同参与的过程。EASA [1] 和 FAA [2] 之间可以进行交叉认证。由于计算和集成需求的不断增加,数字设备(IP 知识产权、集成电路、ASIC 和 PLD 组件)在电子设备中的应用十分广泛。随着这些设备变得越来越复杂,飞机功能可能越来越容易受到硬件设计错误的不利影响。
量子计算机需要误差校正以实现量子优势。他们还需要校准大量参数,以正确操作Qubits,这可能只有53 QUBITS的Google Sycamore需要几个小时。扩展量子计算需要快速,可扩展和屈曲反馈以实现量子误差校正(QEC)和加速校准。QEC和校准都需要电子设备,以测量,计算和应用最低潜伏期的反馈。使用当今的电子设备必须扩展到数千个Qubits。FPGA是理想的选择,因为它们可以重新编程以满足不同的实验需求,同时达到了非常低的反馈延迟。典型的量子操作实验(图1)涉及在室温下通过数字转换器(DAC)(DACS)和对数字转换器(ADCS)的模拟转换器(ADC)的FPGA网络。用于自旋Qubits,控制信号由两种类型组成。首先,基于纳秒坡道的准静态控制,以调整Qubits的潜在井和耦合以改变其状态。其次,通过I/Q调制控制的Ra-dio频率脉冲,用于测量或基于共振的控制。数字混合用于实现更复杂的控制方案和脉搏工程。完整的数字发电提高了灵活性并减少了噪声源。我们使用直接生成的坡道和频率梳子提出了可扩展的,复杂的信号发生器(CSG),以减少
印度班加罗尔理工学院 M. Tech 系助理教授 2 摘要:硬件安全涉及各种操作,包括电子商务、银行、通信、卫星、图像处理等领域。密码学不过是将纯输入文本转换为密码输出或反之亦然的过程。密码学有三种形式:私钥密码学、公钥密码学和哈希函数。私钥只不过是使用类似的密钥进行加密和解密过程,而公钥只不过是使用两个不同的密钥进行加密和解密过程。由于 AES 使用类似的密钥进行加密和解密,因此这种类型的性能非常重要,易于应用,并且需要的处理能力真正较低。加密过程是保护特定信息或数据通信的唯一方法。根据密钥长度,它更有效,并且有三种密钥长度选项可用,它们是 128 位、192 位和 256 位关键长度。密钥长度越长,破解系统或入侵系统所需的时间就越长。AES 执行四种不同的功能或转换,它们如下:子字节、移位行和混合列与添加轮密钥。通过使用流水线架构和 LUT,可以实现更高的速度。所提出的架构是在优化时序的基础上形成的,这是通过使用 verilog HDL 实现的。关键词:AES(高级加密标准)、FPGA(现场可编程门阵列)、LUT(查找表)、混合(混合列)移位(移位行)、子(子字节)。
Florin Udrea 是剑桥大学半导体工程教授兼高压微电子和传感器实验室负责人。Udrea 教授在期刊和国际会议上发表了 550 多篇论文。他在功率半导体器件和传感器领域拥有 150 多项专利(独特的发明)。Florin Udrea 教授于 2011 年至 2019 年期间担任剑桥企业董事会董事。由于他“对英国工程的杰出个人贡献”,他被授予皇家工程院银质奖章。2015 年,Florin Udrea 教授当选为皇家工程院院士。2018 年,Udrea 教授获得了多项重要奖项,包括皇家学会颁发的著名 Mullard 奖章。2021 年,Udrea 教授被《商业周刊》评为“年度学术企业家”。
我们的 FPGA 已在需要有限逻辑量和适度性能水平的指挥和控制应用中的许多程序中取得了飞行记录。RT PolarFire ® FPGA 具有更高的逻辑密度和更高的性能,可显著提高信号处理吞吐量。太空有效载荷中高速数据路径的设计人员可以使用 RT PolarFire FPGA 来利用可编程逻辑的灵活性和易用性。这对于遥感仪器尤其重要,因为传感器分辨率的增长速度快于下行链路带宽,因此它们必须执行快速增加的机载处理量。
与同等的 ProASIC3 器件相比,ProASIC3L 系列 Microchip Flash FPGA 可大幅降低动态功耗 40%,静态功耗 50%。这些节能效果与性能、密度、真正的单芯片、低至 1.2V 的 I/O 操作、可重新编程性和高级功能相结合。使用 Flash*Freeze 技术,用户可以即时关闭动态电源并将器件切换到静态模式,而无需关闭时钟或电源,同时保留器件的内部状态。• 逻辑密度从 7K LE 到 35K LE • 1 Kbit 片上可编程非易失性 FlashROM 存储器 • 1.2V–1.5V 操作 • 基于最多 6 个集成 PLL 的时钟调节电路 • 最多 504 Kbit 的真正双端口 SRAM • 最多 620 个用户 I/O • 最佳设计安全性