我们研究了在平方晶格上具有基塔夫型相互作用的双层量子自旋液体模型的相图。我们表明,低能极限是由具有增强so(4)对称性的π-吹动模型描述的。Hubbard模型的抗磁性莫特过渡信号为双层自旋和轨道自由度的磁性碎片转变。除了各向异性局部顺序参数外,零散的“néel订单”还具有平面内部组件的非局部字符串顺序参数。相关的量子顺序的特征是当NéelVector沿ˆ Z方向而出现的Z 2×Z 2量规,而Z 2量规范则否则。我们以扰动计算为基础,这与现场理论分析一致。我们在讨论了这些阶段的低能量集体激发的讨论中,表明Z 2×Z 2相的金石玻色子是分数化的,非本地的。
政治分裂与统一的历史根源是什么?本研究开发了一个马尔萨斯多国增长模型,以探讨国家间竞争以及政治分裂与统一帝国的内生性出现。我们的模型以一个农业社会为背景,在马尔萨斯环境中,一个国家的扩张可能以牺牲另一个国家为代价,这取决于国家间竞争的强度,该强度由国家间土地比率与人口比率的弹性所反映。如果这个弹性小于 1,则多个国家共存。但是,如果这个弹性等于 1,则会出现一个统一的帝国。哪个国家成为统一的帝国取决于其军事实力、农业生产力以及其统治者对寻租利维坦税收的偏好。我们还讨论了这些理论预测与古代中国战国时期的历史相关性。
互联网流量的巨大增长需要高级技术来实现光学网络的动态操作,有效利用光谱资源和自动化。在本文中,我们研究了弹性光学网络中的主动频谱碎片化(SD)问题,并提出了一种新型的基于深的增强学习的基于深的增强框架,以提高光谱使用效率。与传统的,通常基于阈值的启发式算法不同,该算法解决了相关任务的子集并具有有限的自动化功能,DeepDefrag共同解决了SD过程的三个主要方面:确定何时执行脱落的裂纹,以划分为偏差,以及对这些派别进行划分的连接。通过考虑服务属性,通过几个不同的碎片度指标表达的频谱占用状态以及重新配置成本,DeepDefrag能够在网络寿命上始终选择适当的重新配置动作并适应不断变化的条件。广泛的仿真结果揭示了所提出的方案的卓越性能,而不是详尽的碎片化和众所周知的文献基准启发式,从而在较小的碎片机开销时实现了较低的阻塞概率。
目前,Cas9 和 Cas12a 系统被广泛用于基因组编辑,但它们精确产生大片段染色体缺失的能力有限。I-E 型 CRISPR 介导广泛和单向的 DNA 降解,但迄今为止,控制 Cas3 介导的 DNA 缺失的大小已被证明是难以捉摸的。在这里,我们证明了 Cas9 的内切酶失活 (dCas9) 可以精确控制哺乳动物细胞中 Cas3 介导的大片段缺失。此外,我们分别报告了使用 CRISPR/Cas3 和 dCas9 控制的 CRISPR/Cas3 在小鼠中消除 Y 染色体和精确保留 Sry 基因。总之,dCas9 控制的 CRISPR/Cas3 介导的精确大片段缺失为通过染色体消除建立动物模型提供了一种方法。该方法也有望成为治疗涉及额外染色体的片段突变或人类非整倍体疾病的潜在治疗策略。
是分子量为 500 Da 的可能化合物的估计数量。即使与最多 10 6 个分子的工业级小分子库相比,片段库也大大简化了筛选过程。我的研究小组将 FBDD 原则应用于与氧化还原信号、氧化应激和炎症有关的疾病相关蛋白质-蛋白质相互作用。这些靶标在多发性硬化症、中风、肺部炎症、纤维化、类风湿性关节炎和某些癌症等疾病中发挥着重要作用。FBDD 分为两个阶段:1) 片段筛选以确定初始匹配项,2) 随后对这些匹配项进行表征和优化,使其成为真正的线索。我们使用灵敏的生物物理方法,如表面等离子体共振 (SPR) 和基于配体的 NMR,来筛选大约 2,500 个分子的片段库。在此阶段,我们期望低亲和力匹配项处于高微摩尔或低毫摩尔亲和力范围内。然后我们通过更多轮 SPR 测试或其他分析来验证匹配结果,
P.O.高级纳米光刻研究中心框93019,1090 BA阿姆斯特丹,荷兰。电子邮件:a.m.brower@uva.nl B Zernike高级材料研究所,Rijksuniversiteititit Groningen,Nijenborgh,Nijenborgh 4,9747 AG Groningen,荷兰。 电子邮件: Albert-Einstein-Straße15,12489德国柏林,Physikalisches Institut,Albert-Ludwigs-Universitae Freiburg,Hermann-Hherder-Straße3,79104 Freiburg,德国,德国G Paul Scherrer Institute,Villigen 5232 Box 94157,1090 GD阿姆斯特丹,荷兰†电子补充信息(ESI)可用:XAS Spectra的拟合参数; tinoh的C K边缘吸收光谱;代表性C 1S XAS光谱为裸锡笼计算出来;计算出O K边缘的裸锡笼的XA;图片片段化MS光谱在100 o m/z O 1400范围内;由于C和O K-Edges的Diert元素而引起的吸收横截面;计算出的裸锡氧化笼状态的密度。 来自DFT计算的相关物种的能量。 参见doi:https://doi.org/10.1039/d3cp05428d‡目前的addres:阿姆斯特丹大学,范·霍维特分子科学研究所,P.O。电子邮件:a.m.brower@uva.nl B Zernike高级材料研究所,Rijksuniversiteititit Groningen,Nijenborgh,Nijenborgh 4,9747 AG Groningen,荷兰。电子邮件: Albert-Einstein-Straße15,12489德国柏林,Physikalisches Institut,Albert-Ludwigs-Universitae Freiburg,Hermann-Hherder-Straße3,79104 Freiburg,德国,德国G Paul Scherrer Institute,Villigen 5232Box 94157,1090 GD阿姆斯特丹,荷兰†电子补充信息(ESI)可用:XAS Spectra的拟合参数; tinoh的C K边缘吸收光谱;代表性C 1S XAS光谱为裸锡笼计算出来;计算出O K边缘的裸锡笼的XA;图片片段化MS光谱在100 o m/z O 1400范围内;由于C和O K-Edges的Diert元素而引起的吸收横截面;计算出的裸锡氧化笼状态的密度。来自DFT计算的相关物种的能量。参见doi:https://doi.org/10.1039/d3cp05428d‡目前的addres:阿姆斯特丹大学,范·霍维特分子科学研究所,P.O。Box 94157,1090 GD阿姆斯特丹,荷兰§§当前的addres:柏林合作伙伴经济和技术GmbH,Fasanenstrasse 85,10623柏林,德国柏林。
Cold Spring Harbour Laboratory Press于2025年3月4日 - 由Genome.cshlp.org发布于
图3对颗粒OM(POM)中包含的C的研究和矿物相关的OM(MOM)分数(岩石碎片梯度),具有66%,55%和29%的岩石碎片梯度,测试了14年裸露的休闲(BF)管理的作用,与作物(作物Selhausen(德国)的管理。 (a)OM分数的C比例(分数总计100%,平均值±SD)。 发现低FE土壤中的总咬合颗粒OM(POM)比例高于中型FE(p = 0.002)和高铁(P = 0.02),而没有显着的相互作用或管理效应。 (b)c贡献(分数总计到大块土壤中的绝对有机c含量;平均值±SD)。 由于FE含量和管理之间的显着相互作用(P = 0.02),我们将管理效果作为每个Fe含量的成对组合进行了测试。 通过组合密度(1.8 g cm -3)和尺寸分馏分析了颗粒和MOM分数的C分布。 (c)MOM分数中的C含量(MOM 2 - 6.3μM,MOM <2μm;平均值±SD)。 发现Fe含量与管理之间的相互作用对于MOM2-6.3μM的C含量显着(P = 0.038),并且显示出MOM <2μm的C含量的趋势(P = 0.053)。 因此,使用Tukey HSD在每种FE含量的成对组合中测试了管理效果。Selhausen(德国)的管理。(a)OM分数的C比例(分数总计100%,平均值±SD)。发现低FE土壤中的总咬合颗粒OM(POM)比例高于中型FE(p = 0.002)和高铁(P = 0.02),而没有显着的相互作用或管理效应。(b)c贡献(分数总计到大块土壤中的绝对有机c含量;平均值±SD)。由于FE含量和管理之间的显着相互作用(P = 0.02),我们将管理效果作为每个Fe含量的成对组合进行了测试。通过组合密度(1.8 g cm -3)和尺寸分馏分析了颗粒和MOM分数的C分布。(c)MOM分数中的C含量(MOM 2 - 6.3μM,MOM <2μm;平均值±SD)。发现Fe含量与管理之间的相互作用对于MOM2-6.3μM的C含量显着(P = 0.038),并且显示出MOM <2μm的C含量的趋势(P = 0.053)。因此,使用Tukey HSD在每种FE含量的成对组合中测试了管理效果。
表面等离子体共振 (SPR) 生物传感器方法非常适合基于片段的先导化合物发现。然而,缺乏普遍适用的实验程序和详细方案,尤其是对于结构或物理化学上具有挑战性的靶标或当工具化合物不可用时。成功取决于考虑靶标和化学库的特征,有目的地设计筛选实验以识别和验证具有所需特异性和作用方式的命中物,以及能够确认片段命中物的正交方法的可用性。通过采用多路复用策略、使用多个互补表面或实验条件,可以大大扩展适合基于 SPR 生物传感器的方法识别命中物的目标和库的范围。在这里,我们说明了使用基于流的 SPR 生物传感器系统筛选不同大小(90 和 1056 种化合物)的片段库以针对一系列具有挑战性的靶标的原理和多路复用方法。它展示了识别与下列相互作用的片段的策略:1) 大型和结构动态靶标,以乙酰胆碱结合蛋白 (AChBP) 为代表,AChBP 是一种 Cys 环受体配体门控离子通道同源物;2) 多蛋白复合物中的靶标,以赖氨酸脱甲基酶 1 和辅阻遏物 (LSD1/CoREST) 为代表;3) 结构可变或不稳定的靶标,以法呢基焦磷酸合酶 (FPPS) 为代表;4) 含有内在无序区域的靶标,以蛋白酪氨酸磷酸酶 1B (PTP1B) 为代表;5) 易于聚集的蛋白质,以人类 tau 的工程形式 (tau K18 M ) 为代表。重点介绍了考虑蛋白质和文库特性并提高稳健性、灵敏度、通量和多功能性的实际考虑和程序。研究表明,解决这些类型的目标的挑战不在于识别潜在有用的片段本身,而在于建立验证它们并演变为线索的方法。
与基因组DNA(GDNA)不同,CFDNA不是随机碎片的,其碎片化模式与局部表观遗传背景高度相关。17,18。最近的几项研究已经确定了甲基化和未甲基化的CFDNA分子之间的DNA片段化模式显着不同,7,19,20。这些发现表明,从CFDNA片段化模式中推断DNA甲基化水平的可能性。最近的一项研究提供了一种概念验证解决方案,以通过深度学习模型19预测超高覆盖WGB中DNA甲基化的二元状态。但是,从CFDNA WGS预测甲基化状态的能力仍未得到探索。2020年美国妇产科医生学院(ACOG)指南建议所有怀孕的非侵入性产前测试(NIPT),无论风险如何,这最终将导致美国每年在美国每年都会导致数百万个浅层覆盖率(〜0.1x-1x)CFDNA WG。此外,已经将数十万个CFDNA WGS样品被学术社区和商业实体在全球范围内进行了癌症早期检测和其他目的。21。Given the potential to leverage cfDNA WGS datasets to advance understanding of gene regulation and human health 22 , we developed a computational method, named FinaleMe ( F ragmentat I o N A na L ysis of c E ll-free DNA Me thylation), to predict the DNA methylation status in each CpG at each cfDNA fragment and obtain the continuous DNA methylation level at CpG sites, mostly accurate in CPG富裕地区。我们直接从CFDNA WGS中的碎片模式直接预测了相关的原始组织状态。我们使用对不同生理条件的同一血管(〜16-39x)和浅(〜0.1x)WGS的同一血液中的血浆CFDNA的配对WGS和血浆CfDNA的甲基化水平和原生蛋白状态的预测。