有些人报告了与接触电磁场(包括手机)有关的多种健康问题。这通常被称为“电磁超敏反应”。其症状因人而异,可能包括疲劳、倦怠、注意力不集中、皮肤发红和刺痛等等。这种敏感性可能会使一些人丧失行动能力。重要的是要知道电磁超敏反应不是医学诊断,但人们所经历的症状是真实存在的。这些症状可能与其他原因有关。值得信赖的医疗保健专业人员可以帮助电磁超敏反应患者采取措施找出原因并解决症状。据世卫组织称,目前尚无科学依据证明电磁超敏反应与接触电磁场之间存在联系。
例外点(EPS) - 非遗传系统参数空间中的奇异点,附近的两个特征模型结合的两个具有独特的特性,具有诸如灵敏度增强和手性发射之类的应用。现有的EP激光器的实现在增益培养基中具有静态种群。通过分析全波Maxwell - Bloch方程,我们在这里表明,在激光工作的舒适性非常接近EP时,非线性增益将自发地诱导高于泵阈值的多模式的多模式不稳定性,从而启动了振动的逆逆逆逆逆逆转和基因。通过光谱退化和EP附近模式的空间合并,梳子产生的效率都提高了。这样的“ EP梳子”具有可调的重复率,没有外部调节器或连续波泵的自启动,并且可以通过超紧凑的足迹实现。我们开发了具有振荡倒置的Maxwell - Bloch方程的精确解,将EP梳子的所有时空正常描述为极限循环。我们在数值上以5μm长的增益减肥耦合藻类腔说明了这种现象,并将EP梳子复制速率从20到27 GHz调节。这项工作提供了富含激光行为的严格时空描述,这是由增益介质的非热性,非线性和动力学之间的相互作用产生的。
有记录显示,高剂量的 RF-EMF 辐射可导致非人类灵长类动物和兔子的眼部损伤。33,34 Liu 等人报道了一例人类因误用 90 至 580 kHz RF 辐射的医疗器械而导致视神经损伤,从而导致双侧视力丧失的病例。35 然而,Adibzadeh 等人观察到,在 16 名接受头颈部癌症治疗的患者中,长时间(60 分钟)强烈暴露于 434 MHz RF-EMF 辐射引起的高温并未导致严重的急性眼部损伤。36 通常,眼部损伤的存在和程度与频率和剂量有关,并且可以通过面部厌恶和眨眼反射大大减轻。37 由于足够高的剂量可能会造成眼部损伤,因此建议将全面的眼科检查作为眼部或视力问题患者的初步医学评估的一部分。
我们报告了金纳米粒子 (AuNP) 修饰的石墨烯-硅肖特基势垒二极管的电流-电压特性和低频噪声的结果。测量在环境空气中添加两种有机蒸气四氢呋喃 [(CH 2 ) 4 O; THF] 和氯仿 (CHCl 3 ) 中的任一种进行,以及在黄光照射 (592 nm) 期间进行,接近测量的金纳米粒子层的粒子等离子体极化频率。当加入四氢呋喃蒸气时(在金修饰的石墨烯-硅肖特基二极管中),我们观察到正向电压 (正向电阻区域) 的直流特性发生变化,而当添加氯仿时(在未修饰的石墨烯-硅肖特基二极管中),在黄光照射下会发生微小的变化。与无照射相比,在黄光照射期间观察到两种气体的低频噪声差异明显较大。与没有 AuNP 层的石墨烯-Si 肖特基二极管相比,AuNP 抑制了噪声强度。我们得出结论,所研究的金装饰肖特基二极管产生的闪烁噪声可用于气体检测。
本报告是由美国政府某个机构资助的工作报告。美国政府或其任何机构、其雇员、承包商、分包商或其雇员均不对所披露信息、设备、产品或流程的准确性、完整性或任何第三方的使用或此类使用结果做任何明示或暗示的保证,或承担任何法律责任或义务,或表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务,并不一定构成或暗示美国政府或其任何机构、其承包商或分包商对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
带有线性电子色散的材料通常具有高载体迁移率和异常强的非线性光学相互作用。在这项工作中,我们研究了一种此类材料的(THz)非线性动力学HGCDTE,具有电子带分散体的高度依赖于温度和化学计量。我们展示了带隙,载体浓度和带状形状如何共同确定系统的非线性响应。在低温下,齐纳尔隧道的载体产生占主导地位,以减少整体传输的降低。在室温下,quasiballistic电子动力学驱动最大的观察到的非线性光学相互作用,从而导致透射率增加。我们的结果证明了这些非线性光学特性对电子分散和载体浓度的微小变化的敏感性。
摘要。风能和光伏发电等可再生能源具有动态特性,具有明显的间歇性、固有的随机性和有限的输出支持,对微电网系统的频率稳定性有重大影响。尽管研究仍在进行中,但对提高微电网频率稳定性的控制措施仍然缺乏全面的了解。本文通过总结国内外微电网频率稳定性控制策略的进展来解决这一空白。具体来说,它研究了微电网的运行状态和相关的频率稳定性问题,并阐述了保持频率稳定性的各种方法。本文提出了提高频率稳定性的创新控制措施,包括改进主从控制、下垂控制、锁相环和虚拟同步发电机 (VSG) 技术,特别是在孤岛模式和并网模式之间的转换期间。研究结果证明了这些增强控制策略在保持频率稳定性方面的有效性,并最后提出了该领域未来的研究方向。
波浪般的,玻色粒暗物质候选者(如轴和暗光子)可以使用称为卤素菌的微波腔检测到。传统上,卤素由在TM 010模式下运行的可调铜腔组成,但欧姆损失限制了其性能。相比之下,超导射频(SRF)腔可以达到约10 10的质量因子,也许比铜腔好5个数量级,从而导致更敏感的暗物质检测器。在本文中,我们首先得出了吊带镜实验的扫描速率与负载的质量因子Q L成正比,即使腔带宽比暗物质晕线线窄得多。然后,我们使用非偏高的超高质量SRF腔进行了概念验证搜索。我们排除了深色光子暗物质,具有χ> 1的动力学混合强度。5×10 - 16对于M A0¼5的深色光子质量。35μEV,几乎通过一个数量级获得了最深的范围排除在波浪状的深色光子上。
摘要:Terahertz(THZ)波在6G/7G通信,传感,非促进检测,材料调制和生物医学应用中表现出了有希望的前景。随着高功率THZ源的发展,投资了越来越多的非线性光学效应,并且投资了THZ诱导的非线性光学现象。这些研究不仅显示了电子,离子和分子的清晰物理图片,而且还提供了许多在感应,成像,通信和航空航天中的新型应用。在这里,我们回顾了THZ非线性物理学和THZ诱导的非线性光学现象的最新发展。本综述提供了一个概述和幻觉的示例,说明了如何实现强大的非线性现象以及如何使用THZ波来实现非线性材料调制。