B鱼生态与保护生理实验室,卡尔顿大学生物学系,渥太华博士1125上校,加拿大K1S 5B6; C不列颠哥伦比亚大学海洋与渔业研究所土著渔业中心。2202 Main Mall,Vancouver,BC V6T 1Z4,加拿大; D弗吉尼亚理工学院和州立大学的鱼类和野生动物保护系,Cheatham Hall,310 West Campus Drive,弗吉尼亚州布莱克斯堡,弗吉尼亚州24061;和阿马帕联邦大学,脊椎动物的生态与保护实验室,罗德。2202 Main Mall,Vancouver,BC V6T 1Z4,加拿大; D弗吉尼亚理工学院和州立大学的鱼类和野生动物保护系,Cheatham Hall,310 West Campus Drive,弗吉尼亚州布莱克斯堡,弗吉尼亚州24061;和阿马帕联邦大学,脊椎动物的生态与保护实验室,罗德。
作为人类 - 引起气候变化的加速,加利福尼亚州将经历与记录历史上任何遇到的任何人不同的水文和温度条件。这些变化将如何影响该州的淡水生态系统?河流,湖泊和湿地是作为水资源管理的,但它们也支持复杂的生命网,从细菌,真菌和藻类到大型植物,木本植物,无脊椎动物,鱼类,两栖动物,两栖动物,爬行动物,鸟类,鸟类和哺乳动物。在该州的大部分地区,本地淡水生物已经难以在大规模的水流和大坝上生存,水质恶化,农业和城市发展的广泛土地覆盖范围以及外来物种的入侵。面对气候变化,我们需要扩大努力以恢复退化的生态系统并保护现有生态系统的韧性,健康和生存能力。为此,需要对河流,湖泊和湿地生态系统的更多理解,以预测系统将如何应对未来的气候变化和我们的干预措施。这将需要1)扩大我们的能力,以机械机理的方式对淡水生物群和生态系统的响应方式进行对环境变化的反应; 2)假设 - 驱动监测和现场研究; 3)建立研究,从业者,管理和政策能力的教育和培训; 4)制定用于构建弹性生态系统的工具和政策。需要一个目标 - 驱动的,假设的 - 部落,州(和联邦)机构,非政府组织,非政府组织,院士和顾问的目标,以实现这些目标,并促进对从业人员,监管机构的未来劳动力以及必须伴随着已经存在的气候变化的研究人员的技能和知识。
当前的研究全面回顾了淡水Mi Crobial群落中的生态位和致病性转移,以应对高污染负荷引起的压力。该研究对氧气水平的变化如何倾向于通过深入研究污染物负荷的增加如何影响淡水稳定性来影响水生生物群的存活。审查表明,高污染负荷改变了淡水资源的平衡,例如有机物,溶解的气体,光穿透和必需营养素。这会导致氧化动力学和淡水环境中微生物的依赖物种的变化。这种氧动力学还导致淡水微生物的基因组改变,从而导致抗生素耐药基因的发展,从而增加淡水微生物的致病性。氧动态创造的降低了淡水环境的自然防御策略,从而提高了病原体感染各自宿主的功效。对淡水外毒素的产生和与微生物的相互作用涉及的机制的详细研究将使对Exotoxin的作用有重要见解。淡水微生物致病性变化的影响对环境和医疗利益都至关重要。这是因为致病性的变化不仅对水生生物有害,而且还抵抗了经过不当处理的饮用水。当连续使用时,这种水可以逆转健康和生活质量。一项关于特定污染物如何导致淡水微生物群体的利基和致病性转移的广泛研究将详细了解污染对淡水环境稳定性的影响。
在本综述中给出了全球淡水鱼品种的概述以及影响河流之间和河流内部变化趋势的变量。大陆淡水生态系统高度多样化,物种丰富,在<0.5%的土地面积中,近18,000种鱼类(> 50%的鱼类物种)居住,并且提供了无忽略的(<0.01%)的含水。大型低地热带河流盆地,例如亚马逊,刚果和湄公河盆地,是最大的淡水鱼多样性的家园。全球杂志的鱼类深度变化的淡水种类与水生栖息地的总量和变化以及鳞片演化期间环境平衡的加班。河连续概念指出,沿着从赫德沃特到河口的环境梯度沿环境梯度的鱼类深度,物种多样性以及功能特征的变化。与附近洪泛区有关的矿物质和有机物的持续贸易是世界大部分地区河流鱼类数量和种类的重要因素(洪水脉搏概念)。没有协调的保护工作,由于他们目前在全球面临的许多威胁,淡水鱼将遭受丰富和多样性的巨大损失。但是,需要进一步的发展,适应,培训和指导。需要基于节水,合适的物种和当地传统的新技术。也可以使用废料和当地饲料添加剂。应为农民提供必要的培训和信息。
藻类起源于化石记录,在前寒武纪近三十亿年。大概的计数表明大约有72,500种藻类。其中,可能已经正式发布了大约44,000个名称,已经处理了33,248个名称(1)。藻类代表着一个至关重要的真核生物。它们具有重要意义,因为它们是从海洋环境过渡到土地的开创性生活形式,随后发展成为我们今天看到的各种植物(2)。与陆生植物相比,大多数藻类都是光合作用,并且具有更简单的细胞结构和细胞器。藻类形成一个多媒体群,这意味着它们不共享共同的祖先。虽然它们的质体可能起源于蓝细菌,但采集过程似乎在不同的藻类组之间有所不同(3)。微藻具有巨大的生物多样性,并且在很大程度上尚未作为资源。每个物种可能具有独特的特征,潜在地含有丰富的碳水化合物,糖和蛋白质。这些特质使它们对于生产动物饲料甚至食物以供人类消费而产生有价值(4)。藻类是丰富的石油来源,可与菜籽油(例如菜籽油,大豆和菜籽)相媲美。这种油可以很容易地转化为生物柴油。因此,利用微藻生物生产具有巨大的长期潜力(5)。藻类在肥料行业,生物修复和污染控制中找到应用。这些角色对于维护水生生态系统的平衡至关重要,并充当有价值的生物指导者。栖息地内藻类的生长显着影响生态系统,并迅速对水生环境的改变,尤其是与营养水平有关。它们在水体内不同区域的分布受其物理化学条件的影响(6,7)。
基于自旋柱的DNA纯化试剂盒(例如Qiagen dneasy血液和组织试剂盒)一直是从包括腹足动物在内的各种生物体中提取基因组DNA的最爱。如前所述,这些套件的缺点是从某些样本类型(例如存储在乙醇中的样本类型)中可以实现的GDNA的数量和质量较低,但是在许多其他情况下,从其他样本类型中提取的GDNA可以很好地工作。可用的商业自旋柱套件的优点(例如Qiagen和Zymo品牌产品)是此过程中速度,易用性和缺乏有害化学物质的速度。蜗牛矢量工作组建议可以有效地使用几种基于自旋的柱子的试剂盒和方法,其中可以从新鲜组织中取出少量组织(例如部分头部脚),以避免过载和阻断旋转柱,并避免大量抑制物质的含量(请参阅Adema 2021)。此外,对于基于PCR的应用程序(甚至是扩增子面板),DNA质量和数量较低的DNA仍然适合使用,这些提供了一个不错的选择。注意,但是,使用Qiagen B&T旋转柱套件提取的生物胶质蜗牛的基因组DNA产生了具有出色读取长度的PACBIO组件(Bollmann,OSU)。
蓝细菌通常称为蓝绿色藻类,是一组光合细菌,可以在湖泊,池塘和河流中传播,形成盛开。蓝细菌的开花通常被称为有害藻华(HAB),这是由于某些蓝细菌产生氰诺毒素的能力,对人类和动物造成了健康危害。1个腐烂的花朵也会导致水中溶解的氧气迅速耗尽,这可能导致鱼突然死亡。HAB在夏季和加拿大早秋季最多产,当时休闲用水也是最多的。加拿大卫生部已经建立了评估水质和管理娱乐淡水中蓝细菌风险的指南,2,并为一组氰毒素(MC)设定了指南限制。此限制(10 µg/L)旨在保护在游泳等活动期间因意外摄入水而暴露的最脆弱的人群(儿童)。
“蓝色碳”生态系统(BCE),尤其是红树林沼泽,通常因其缓解潜力而受到认可,并且在这方面比内陆淡水生态系统受到了更大的关注(IPCC 2014)。因此,在本章中,我们关注淡水生态系统(湿地,湖泊,水库和河流)以及淡水依赖的沿海和海洋系统。本章采用“问题原因”方法来解决基于淡水生态系统的气候变化的缓解。它在什么情况下讨论了长期碳汇(即淡水生态系统)成为碳源,以及如何消除或最小化这种转变,以继续从隔离碳的潜力中受益。这些缓解措施具有实质性的共同利益,并与可持续发展目标保持一致,但是它们的采用可能需要根据当地和区域背景来量身定制。
Koehn 描述了流域的河流生态系统及其健康状况。由于受到各种威胁的影响,这些生态系统的状况通常很差,而且许多宝贵的生态资产仍在不断减少。尽管人们对流域经济发展和管理给予了极大关注,但对生态管理的投资却滞后了。本地鱼类种群的大幅减少(过去 150 年损失了 90% 以上),加上达令河的大量鱼类死亡和外来鲤鱼种群的激增,都清楚地提醒人们注意流域水生生态系统中发生的生态紧急情况。必须全面关注所有生物群、水生生态系统及其提供的生态服务。原始环境水回收量的减少、流域计划实施的暂停以及对气候变化后果的忽视,推迟了任何重大的环境改善,并威胁到流域计划的目标。
1。简介淡水SH多样性的研究有助于确定水产养殖生长的状态。鱼是人类以及其他动物的重要饮食。在piscrulture中,它针对最大的SH[1]生产以优化依赖性。在这种情况下,可以引入异国情调的简介[2]以保持生产率。虽然在我国进行异国情调的异国情调的不加区外的引入带来了一系列问题,包括消除[3,4]本土SH的[3,4]最终导致生物多样性损失。在西孟加拉邦,北24-帕尔加纳斯地区拥有约31872.19公顷的主要开放水资源,其中包括26007.75公顷的扣押[5]淡水面积。在2014-15期间,该地区的内陆生产是194380吨,占[6]州内部生产的13.51%,其最早的生产位置。[5] Dhara等。报道说,淡水奇异的SH是土著SH物种的令人震惊的威胁,他们建议在其分布或人口动态上准备一个区域明智的数据库。有必要计划在生物多样性的公约下进行保护和管理濒临灭绝的土著物种,[7]特别参考UNEP的第6条和第8条。