詹姆斯·韦伯太空望远镜是太空中最强大的望远镜,它似乎比当前理论预期的更早探测到了星系结构的形成。该项目的目的是使用一种精髓型理论来解释早于预期的结构形成,该理论假设宇宙膨胀和暗能量具有相同的起源。这是使用弗里德曼方程完成的,将能量密度项替换为体积时间相关的初始能量项,该初始能量项旨在表示暗能量。这一变化基于这样的假设:暗能量正以光速被另一个相反的宇宙输送到这个宇宙中。新的暗能量理论包括膨胀状态和宇宙学常数状态,如宇宙学标准模型中所述,但与现有哈勃参数的时间依赖性并不完全匹配。这一新理论为早期星系形成的变化提供了一种解释,但尚未成功;然而,调整理论可以更好地适应詹姆斯·韦伯望远镜的观测结果。更好地理解宇宙及其形成将进一步加深科学家对宇宙当前内容及其必然终结的理解。
编辑寄语 3 海上力量 '84 3 AMI 图书馆 5 函件 7 1982-1983 总统报告 9 财务报表 11 西海岸报告 — Vic Jeffery 撰写 13 RAN 海洋和气象服务 — Haydn L. Daw 指挥官 RAN 15 西塔斯曼海的海洋分析 — C.A. Low 少尉撰写 21 拯救 KRAIT — Ross Gillett 撰写 25 美洲杯的气象支持 — K.L. Hancock 少尉 RAN 30 HMAS KIMBLA 海洋作业 1983 — P.L Mulready 少尉 RAN 35 沿海监视对海军的影响 — A.M.R. 指挥官撰写Brecht RAN 38 RAN 水文服务工作 — 作者:J. Leech 海军少尉 RAN 45 澳大利亚激光水文测量的发展 — 作者:D.C. Holliday 海军少尉 RAN 49 海事临时论文 — 评论 52 蒙特哥湾之外的道路 — 1982 年联合国海洋法公约的进展 — 作者:W.S.G. Bateman 上尉 RAN 53 海岸警卫队 — 交通部 59 Barque ZANONI 的沉船 — 作者:R. Pennock 海军少尉 RAN 61 华盛顿笔记 — 作者:Tom Friedmann 65 书评 67 申请入会 68
摘要在本文中,我们得出了被称为f(r,g)坟墓的修饰的高斯 - 邦纳特重力方程,用于非friedmann-Robertson-Warker(FRW)SpaceTime。我们利用动力学系统方法来研究由辐射和物质组成的两种不同类别的F(r,g)模型的宇宙动力学(冷的深色矩阵和最终物质)。研究了固定点周围的线性扰动,以探索相应的稳定点。在f(r,g)= f 0 r n g 1-n和f(r,g)= f 0rα + f 1gβmod- ems中研究了宇宙学的意义,以鉴定宇宙的定性演化,并使用频段时间。详细讨论了所考虑的模型类之间的质量差异。与宇宙的延迟加速和放射相对应的固定点将存在于模型中,但是,与物质二号阶段相对应的固定点的存在将取决于f(r,g)的功能形式。此外,自主系统可用于研究cosmographic参数以及状态发现诊断。
奇点分辨率、暗物质和暗能量:人们一直期望量子力学能够解决经典时空奇点问题。在最近的一篇论文(Das, Phys. Rev. D89 (2014) 084068)中,人们发现这可以通过一种简单的方式实现:在 Raychaudhuri 方程中用量子(Bohmian)轨迹取代经典测地线(该方程通过霍金-彭罗斯奇点定理预测所有经典测地线都是不完整的,时空是奇异的),并表明这些量子轨迹实际上是完整的。换句话说,自然界中基本粒子的量子轨迹将永远延续下去,永远不会遇到任何奇点。此外,这还产生了一种新的量子势,它转化为弗里德曼方程中的宇宙常数项,而弗里德曼方程控制着我们宇宙的演化。由于对量子波函数有一些合理的假设,即它在大尺度上是均匀和各向同性的,与宇宙学原理一致),并且它代表具有小质量的引力子或轴子的凝聚体,与所有理论和观察一致,然后正确地再现了自然界中观察到的小宇宙常数(暗能量)(Ali,Das,Phys. Lett. B741(2015)276)。我们还计算了这种凝聚体的临界温度
E-ELT 欧洲极大望远镜 EFT 有效场论 EM 电磁 EMRI 极端质量比螺旋 EoS 状态方程 ET 爱因斯坦望远镜 EWPT 电弱相变 FLRW 弗里德曼-勒梅特-罗伯逊-沃克 FOPT 一级相变 GB 银河双星 GW 引力波 GR 广义相对论 IMBBH 中等质量双黑洞 IMS 干涉计量系统 IR 红外线 KAGRA 神冈引力波探测器 KiDS 千度巡天 K CDM 宇宙常数加冷暗物质 LIGO 激光干涉引力波天文台 LISA 激光干涉仪空间天线 LSS 大尺度结构 MBBH 大质量双黑洞 MBH 大质量黑洞 MCMC 马尔可夫链 蒙特卡罗 MHD 磁流体动力学 NG 南部后藤 PBH 原始黑洞 PISN对不稳定超新星 PLS 幂律敏感性 ppE 参数化后爱因斯坦 PTA 脉冲星计时阵列 RD 辐射主导 QCD 量子色动力学 SGWB 随机引力波背景 SKA 平方公里阵列 SM 粒子物理标准模型 SNR 信噪比 SOBH 恒星起源黑洞 SOBBH 恒星起源双黑洞 TDI 时域干涉测量 UV 紫外
1:国际可再生能源署(IRENA)。 (2022 年)。能源转型的地缘政治——氢因素。 https://irena.org/-/media/Files/IRENA/Agency/Publication/2022/Jan/IRENA_Geopolitics_Hyd- rogen_2022.pdf?rev=1cfe49eee979409686f101ce24ffd71a 2:Weichenhain,U.(2021 年)。氢气运输——解锁清洁氢经济的关键。 https://www.rolandberger.com/publications/publication_pdf/roland_berger_hydrogen_transport.pdf 3:IRENA。 (2022 年)。能源转型的地缘政治——氢因素。 https://irena.org/-/media/Files/IRENA/Agency/Publication/2022/Jan/IRENA_Geopolitics_Hyd- rogen_2022.pdf?rev=1cfe49eee979409686f101ce24ffd71a 4:摘自:德国环境咨询委员会。 (2021 年)。氢气在气候保护中的作用:重质不重量。 https://www.umweltrat.de/SharedDocs/Downloads/DE/04_ Statements/2020_2024/2021_06_position_hydrogen_in_climate_protection。 pdf?__blob=publicationFile&v=4 5:EPO 和 IRENA。 (2022 年)。专利洞察报告。氢气生产电解器的创新趋势。 https://www.irena.org/-/media/Files/IRENA/Agen- cy/Publication/2022/May/IRENA_EPO_Electrolysers_H2_production_2022。 pdf?rev=647d930910884e51b60137bcf5a955a6 6:国际可再生能源署。 (2022 年)。工业绿色氢气——政策制定指南。 https://irena. org/-/media/Files/IRENA/Agency/Publication/2022/Mar/IRENA_Green_Hydrogen_In-dustry_2022_.pdf?rev=720f138dbfc44e30a2224b476b6dfb77 7:Fan, Z.、Ochu, E.、Braverman, S.、Lou, Y.、Smith, G.、Bhardwaj, A.、Brouwer, J.、Mccormick, C. 和 Friedmann, J. (2021 年)。循环碳经济中的绿色氢:机遇与局限。 https://www.energypolicy.columbia.edu/sites/default/files/file-uploads/GreenHydrogen_CGEP_Report_111122.pdf。 8:绿色氢能组织。 (第)。哥伦比亚。 https://gh2.org/countries/colombia 9:气候行动追踪。 (第)。哥伦比亚。 https://climateactiontracker.org/countries/colombia/targets/
阿迪纳·阿贝尔斯(Adina Abeles),陈·扎克伯格(Chan Zuckerberg)倡议布拉德·阿克(Brad Ack),海景拉蒙·阿拉特雷(Ramon Alatorre),4个角落碳联盟联盟杰克·安德里斯森(Jack Andreasen) Gabrielle Dreyfus, Institute for Governance & Sustainable Development Simon Freeman, Department of Energy — ARPA-E Julio Friedmann , Carbon Direct Inc. Susana Garcia , Heriot-Watt University Maddie Hall, Living Carbon Dave Hillyard, Carbon Technology Research Foundation Jason Hochman, Direct Air Capture Coalition Nicole Iseppi, Bezos Earth Fund Andy Jarvis, Bezos Earth Fund Marc von Keitz,Grantham基金会Anu Khan,Carbon180 Matt Kirley,RMI Kelley Kizzier,Bezos Earth Fund,Charlotte Levy,Carbon180 Energy of Energy,Arpa-e Cara Maesano - Arpa-e Cara Maesano Moya, Carbonfuture Sara Nawaz, American University — Institute for Responsible Carbon Removal Meghana Palepu, Bezos Earth Fund Aaran Patel , The Nand & Jeet Khemka Foundation Lara Pierpoint , Prime Coalition — Trellis Climate Erika Reinhardt, Spark Climate Solutions Mitchell Rubin , Elemental Excelerator Maki Tazawa, Grantham Foundation Matt Villante, Pacific Northwest国家实验室Anya Waite,海洋前沿学院 /达尔豪西大学Frances Wang,正交气候基金会Eli Weaver,RMI Lori Ziolkowski,国家科学基金会< / div>
神经退行性疾病(NDD)是指以脑和脊髓中神经元进行性丧失为特征的一组慢性疾病。由于技术局限性,我们对NDD的最初理解最初限于异常蛋白质聚集的病理表现,例如阿尔茨海默氏病(AD)中的β蛋白,亨廷顿蛋白(HTT),亨廷顿氏病(HTT)蛋白在帕克森氏病中α-synuclein in parkinson's Disean和Neurophent中的huntington蛋白(HTT)蛋白。但是,针对蛋白质水平异常的治疗方法在临床试验中一直面临挫折。到20世纪末,测序技术的革命进步构成了一种新颖的观点来解释NDD进展和基因突变的机制,这被认为是表型变化的驱动因素。此后,对基因水平的NDD进行了几项研究。随着测序方法向第三代技术的进展,许多与NDD相关的突变和单核苷酸多态性(SNP)位点被逐渐鉴定。然而,基因突变不能解释100%的NDD病例和零星病例,即使对于亨廷顿氏病(HD),通常被认为是常染色体显性疾病。因此,近年来,研究重点已从直接基因表达扩展到表达的调节,其中包括转录组学,蛋白质组学和表观基因组学的领域。基因疗法的概念是1972年提出的(Friedmann and Roblin,1972),它是指通过分子均值的基因序列的有针对性变化。从狭义的意义上讲,基因编辑主要是通过诱导基于DNA双链的特定DNA双链(DSB)来实现的,以替换基于Donor的基因序列,以替代Donor refer。 CRISPR/CAS9系统,快速进步的遗传领域具有显着的治疗
观察者还使用“回避”而不是“减少”来表示同一件事。参见,例如,Battocletti等人,前注2,第528-29页; Gregory Trencher等人,主要公司对低质量抵消的需求破坏了自愿碳市场的气候完整性,15 n n n ature communications no。6863,2024,3,https:// perma。cc/ek2z-2gcy。其他人则区分“减少排放”和避免排放量。”参见,例如,《从业者指南:将自愿性碳市场与巴黎协议测试保持一致》,g old S tandard(2024年7月3日),https://perma.cc/73dt-zf3q(将减少的排放定义为“由于特定的干预措施,诸如Ensiiss Extions and Emission and renene and renew and renew and renew and renew and renew and降低的排放”,以及AVO的效率,以及AVO的效率。由于较低或没有温室气体排放的干预措施,散发到大气中,例如林业相关的项目); Rena S. Miller和Jonathan L. Ramseur,自愿碳信贷市场和商品期货贸易委员会,r sch。s erv。(2024年6月13日),https://crsreports.congress.gov/product/pdf/r/r48095(上次访问,2025年1月30日)[永久链接不可用];朱利奥·弗里德曼(Julio Friedmann)和马修·D·波茨(Matthew D.除了令人困惑之外,减少和避免项目之间的这种区别分散了人们的注意力,从减少当前或未来排放的项目(减少项目,本报告的术语中)和消除过去排放(撤销项目)的项目之间的区别。参见,例如,牛津原则,前注2,第16页(指出降低信用可以加速短期或中期的脱碳化,但“世界各地的组织在零净目标日期一直散发出来,而付费零组织或参与者只能减少他们的排放,全球排放将永远无法达到网络零。”
在世界法律基金的资助下,福尔克教授和门德洛维茨教授撰写了四卷书,约两千多页,内容是他们所谓的“世界秩序战略”。第一卷的标题是《战争预防理论》;第二卷是《国际法》;第三卷是《联合国》;最后一卷是《裁军与经济发展》。每卷都采用的方法都是选用多位作者的精选作品,并按章节或“主题”排列。每章的末尾都选出了克拉克和索恩的《通过世界法律实现世界和平》中的“配套阅读”,以此作为评估各种贡献的模型。此外,在每篇文章之后,编辑们都附上了一份问题清单,这些问题令人钦佩,因为它们不仅仅是质疑读者对刚刚阅读的材料的理解:要求读者将这篇文章中的某些想法与另一篇文章中的想法进行比较,进行概念化、选择和解释。这些问题可以很好地激励那些过于肤浅的学者,也可以作为学生关注的焦点。通过他们的介绍性评论和这些精心策划的问题,编辑们成功地引导了研究的方向,但又不会显得太过突兀。还应该提到的是,这项研究的另一个优点是哈罗德·拉斯韦尔、沃尔夫冈·弗里德曼、奥斯卡·沙赫特和 J. 大卫·辛格分别为每卷撰写了深刻而富有启发性的前言。这些不是随机的阅读集合;也不是关于特定主题的对立观点的集合。相反,它们是·因其对世界秩序的系统研究的贡献而被选中的著作。每一篇选集都为这项对国际秩序的综合考察带来了一项相关技能,这些技能多种多样,包括政治学家、律师、社会学家、历史学家、经济学家和物理科学家的技能。作者还需要完成以下三项任务之一:通过参考积累的有关该主题的知识做出智力贡献;假设未来的替代方案;或提出将未来的建议与当前实践联系起来的方法。正是这种三重结构——“研究现有的国际体系,研究旨在实现防止战争目标的假设替代体系,以及将一个体系转变为另一个体系的可用手段”(第一卷,第 vii 页)——使得编辑们将他们的卷本称为国际体系理论研究。可以说,这种称谓在国际体系理论中有点自命不凡。
