• 接受部长理事会能源政策委员会的指导,与能源政策负责人合作,领导与海上能源项目相关的政策和立法。 • 协助 DEFA 的海上能源团队,牵头起草与环境和健康与安全立法进展相关的文件,这将包括部门文件、咨询文件和报告、起草说明、理事会文件、通知和部长发言稿。 • 为二级法规制定提供技术内容,包括与外部法律和行业顾问联络。 • 承担立法方面的必要咨询要求,并准备部门的最终政策立场,以纳入立法草案。
保持和发扬欧洲的创新优势是保持全球创新海上可再生能源领导地位的关键。欧洲大学和研究中心在开发创新解决方案和技术方面处于世界一流水平。但将这些创新推向市场并跨越“死亡之谷”仍然是一项艰巨的挑战。各国政府应支持欧洲的新兴行业,并放宽创新技术的市场准入。我们需要看到具体的金融机制来帮助扩大和部署创新能源解决方案。
2024年10月7日,巴黎的海上风项目 - 总能量已与RWE签署了一项协议,以在北海的两个海上风项目中获得50%的股份。这两个项目分别是N-9.1(2 GW)和N-9.2(2 GW),位于德国海岸110公里的N-9.2(2 GW),于2024年8月授予RWE,并获得了25年的许可,可扩展到35年。这次收购将增加我们已经授予的N-112.1,N-11.2和O-2.2优惠,这应该使总含量能够从其6.5 GW德国离岸风车中心的协同作用中受益,并优化其建设和运营成本。“我们很高兴加强与RWE的联系,RWE是可再生能源的关键参与者,也是荷兰Oranjewind项目的合作伙伴。这种新的合作伙伴关系为我们在欧洲最大的德国电力市场的综合发展做出了贡献,并将使总能量能够提供绿色电子,以使该国的电力和工业脱碳,” TotalEnergies的SVP Renewables Olivier Jouny说。“我们很高兴欢迎我们在德国本国市场上交付这些大规模离岸风项目的合作伙伴。作为我们荷兰离岸风力项目Oranjewind的值得信赖的合作伙伴,Totalenergies具有我们的雄心,以进一步推动海上风能的增长,以加速德国及其他地区的能源过渡。我们的RWE团队将带来他们在海上风能行业的多年经验以及对海上风能行业的深入了解,以成功地发展和建造两个风电场。关于海洋环境,地下和风与海洋学条件的初步研究已经由德国联邦海事和水文机构(BSH)进行。这些数据将帮助RWE和总能量计划公园的建设,该公园计划分别于2031年和2032年进行。
在2019年Fife Inverkeithing建立在Inverkeithing,Pict Offshore专门涉及创新访问和提升解决方案。“起步安全”的人员进入系统使用了一个运动补偿的提升机,使技术人员可以安全地从机组人员的移动甲板转移到涡轮机基础上,而无需爬上固定的梯子。英国和美国的四个商业规模的海上风力项目已经依靠该系统,提高了机组人员的安全性并允许简化的基础设计。2019年至2023年,PITS从5个以上的员工增长到40多名员工,并预计到2023年底的营业额约为1000万英镑,到2030年的两倍以上。现在正在努力开发新的应用程序,包括货物提升和验证系统在浮动风中的使用。
2独立研究人员,美国德克萨斯州休斯顿,3尼日利亚Nnamdi Azikiwe大学机械工程部3机械工程系05-10-24许可详细信息:作者保留了本文的权利。本文根据创意共享属性 - 商业4.0许可(http://www.creativecommons.org/licences/by-nc/4.0/)发行,允许工作,无需进一步的工作,可以将工作归因于本期刊的开放式访问页面,从而可以进行非商业用途,再现和分发。___________________________________________________________________________
国家已经表明,公开致力于标准化传输技术,以促进更具成本效益的项目,并为将来的相互联系的离岸网格提供选择性。国家可再生能源实验室的大西洋海上风传输研究1强调了网络高压直流电流(HVDC)传输网格,这是最具成本效益的长期解决方案。其他人倡导交替流动(AC)“网格就绪”系统来解决近期机会。新英格兰州,马里兰州,新泽西州和纽约都需要或表示对任何一种类型的努力表示兴趣,以协调传输设施的规划,反映出更广泛的全球趋势朝着全面的传输策略迈进,尤其是在欧洲的长期计划和大规模的承诺中,以购买必要的设备。
该项目是由美国能源部国家能源技术实验室资助的部分,部分是通过现场支持合同资助的。美国政府,其任何机构,其任何雇员,支持承包商,或其任何雇员既不对任何信息,设备,产品或程序所披露的任何法律责任或责任,或承担任何法律责任或责任,或者承担任何法律责任或责任,或者表示其使用均不将使用其使用,或者代表其使用不会侵权私人权利。在此引用以商业名称,商标,制造商或其他方式参考任何特定的商业产品,流程或服务。本文所表达的作者的观点和观点不一定陈述或反映美国政府或其任何机构的观点和意见。
随着混合型海上园区的发展,以及在不久的将来大规模实施的预期,研究适当的能源管理策略以提高这些园区与电力系统的可集成性变得至关重要。本文讨论了一种多目标能源管理方法,该方法使用由电池和氢/燃料电池系统组成的混合能源存储系统,应用于多源风波和风能-太阳能海上园区,以最大限度地提高输送能量,同时最大限度地减少功率输出的变化。为了找到能源管理优化问题的解决方案,提出了一种策略,该策略基于检查一组加权因子来形成帕累托前沿,同时在混合整数线性规划框架中评估与每个因子相关的问题。随后,应用模糊决策从帕累托前沿中现有的解决方案中选择最终解决方案。研究在不同地点实施,考虑了电力系统限制的情况和存储单元的位置。根据结果,应用所提出的多目标框架成功地解决了混合海上园区在所有电力系统限制和组合存储位置情况下的能量输送和功率输出波动的减少问题。根据结果,除了输送能量增加外,在研究案例中还观察到功率变化减少了约 40% 至 80% 以上。