3. ATR 分析 – 学生在工业中遇到的大多数 FTIR 系统都会使用衰减全反射 (ATR) 附件。通过 ATR 附件收集数据会从根本上改变峰值强度,从而影响光谱库搜索结果。此模块清楚地显示了透射光谱和 ATR 光谱之间的差异,以及它对库搜索和材料识别的影响。
迷你电影制造商一个负担得起且紧凑的单元,适用于少量供应量的轻型应用。包括加热的柏拉图,压力机以及将聚合物样品融化为可重复的膜所需的一切,并使用您的Thermo Scientific FTIR光谱仪分析它们。允许对添加剂和其他聚合物特性进行定量分析,包括共聚物中的结晶度和单体比。紧凑型尺寸几乎可以在任何桌面或实验室长凳上使用,并且能够加热高达250°C。胶片可以按至50、100、250和500微米的厚度,并安装在随附的10毫米光圈采样卡中以进行传输分析归档。
这项研究的目的是使用傅立叶变换红外(FTIR)分析来自热解聚苯二甲酸酯(PET)的化学成分。在与两个冷凝器(24°C)相连的批处反应堆中,将pET颗粒在120至277.7°C之间的温度下进行105分钟。冷凝器设置为反应器的输出,并关闭所有系统。第一个冷凝器直接连接到反应器,而第二个冷凝器连接到第一个冷凝器。。在第一个冷凝器和第二个冷凝器中获得了具有独特气味的无色液体样品。残留物是黑色和坚固的。两个冷凝器样品都包含相似的基团,例如OH组,C-H组,C = O组和C-H组。产品中最优势的化合物是苯甲酸和水作为侧产物。这种热解过程通过将碳氢化合物链分解成短链来表明降解和氧化反应的发生。这会导致苯甲酸氧化以产生苯甲酸和水。这项研究通过了解热解后PET塑料中包含的化合物对PET塑料废物的管理产生了影响。最后,这项研究可能是解决可持续发展目标(SDG)中当前问题的问题解决者。
— • 连续、定量和选择性测量 HCl、HF、H 2 O、CO、CO 2 、SO 2 、NO、NO 2 、CH 4 、NH 3 、N 2 O、H 2 CO、O 2 和 VOC(其他气体可根据要求提供)• 最多 15 种测量组分(标准),可根据要求简单升级• 成熟的热湿萃取测量技术• 通过成熟的 FTIR 技术实现高稳定性、准确性和可靠性• 完全集成的 VOC 和 O 2 分析仪(可选)• 独特的气动喷射泵,无移动部件,需要处理的冷凝水少• QAL3 自动跨度漂移检查,无需测试气体• 通过仅使用一个采样系统的多组分测量技术,降低拥有、维护和安装成本• 完整的预制系统,空间要求适中,紧凑和模块化系统设计• 大型背光显示屏上清晰的状态消息和用户友好的操作员界面• 通过以太网或 Modbus TCP(模拟和数字输出,Modbus和 PROFIBUS 可选) • 通过以太网进行本地控制以进行服务,并通过 UMTS 进行远程维护 • 集成和显示来自其他探测器的信号(例如灰尘、汞、流量、压力、温度)
•通过利用Nicolet Apex FTIR光谱仪的先进技术来升级您的故障分析功能,该技术与我们的FTIR显微镜,TGA-IR系统以及其他各种配件毫不费力地集成在一起,以促进对小颗粒或表征药物表征的缺陷分析。
仅用于研究使用。不适用于诊断程序。有关当前认证,请访问thermofisher.com/certifications©2024 Thermo Fisher Scientific Inc.保留所有权利。除非另有说明,否则所有商标都是Thermo Fisher Scientific及其子公司的财产。MCS-AN1033-EN 04/24
图4。使用LN2-MCTA和15x15微米光圈从层压板,反射模式下的区域图。b1是背景点,蓝色十字毛指示所示的光谱起源(来自尼龙+聚丙烯层)。每个光谱是一个单个扫描,光谱分辨率设置为8 cm -1。图像是与尼龙光谱相关的曲线(红色高,蓝色低)。
红外光谱法对催化剂研究的最重要应用是提供有关活性位点性质,其强度和浓度的信息的能力。强度通常与测试分子在吸附时的频移相关,尽管如果表面覆盖范围足够高,这些数据可能会因吸附层中的横向相互作用而扭曲。关于该位点浓度,其基于频带强度的测量值的估计使知道测试分子的吸收系数ε的必要性变得复杂,这可能会受到吸附的影响。CO具有某些优势作为氧化物吸附剂的测试分子。在非转变金属阳离子的电场中,唯一振动的频率定期变化,反映了路易斯酸位点的强度。,关于吸附CO的吸收系数的数据是相当矛盾的[1-4]。烈矿型沸石被广泛用于催化和环境保护中。冬日矿的催化特性取决于SIO 2 /Al 2 O 3摩尔比和电荷补偿阳离子的性质。在H-摩尔迪派中,最重要的特征是酸性OH基团的分布,这取决于框架中Al-Al-Al-tetrahedra的数量和分布。在[5]中,通过吸附CO的IR光谱估算了Lewis和Brønsted酸位点的数量以及硅烷酚基团的数量,而通过NMR数据测量了Alu-Minum的含量。沸石OH基团从3613转到3290 cm –1的偏移伴随着2175 cm –1的吸附CO带的生长(图1)。对应关系还不错,但是IR测量基于其他沸石获得的CO或OH组的ε值,尽管已知即使在相同的冬日岩结构中,桥接的Brønsted羟基也没有等效,并且在其位置上也有所不同。在这里,我们报告了综合灭绝系数和吸附焓的测量结果,用于在激烈岩上吸附的不同CO物种,SIO 2 /Al 2 O 3摩尔比〜15.0。在–196°C下进一步添加气体在2137 cm –1处导致条带,这是由于我们认为的,这是由于带有Siloxane bridgs的侧面复合物引起的[6]。按照[3]中描述的步骤,我们测量了从压力增加到从细胞底部提高样品到环境温度的吸附CO的数量。在2175 cm –1和2137 cm –1时,带为2175 cm –1 –1和2.0±0.1 cm/μmol的带为1.77±0.09 cm/μmol。
验证使用FTIR UATR确定绿茶样品中咖啡因的方法。ATR(减弱总反射率)是一种无损分析技术,首先没有样品制备。咖啡因是在波数1600和1700 cm -1中出现的吸收中确定的。使用咖啡因浓度的标准溶液0-5%的校准曲线测量可产生良好的线性性,相关系数值(R 2)为0.9978。精度为%RSD(2,8369%),满足接受2/3 CV Horwitz(4,5323)的要求。通过峰值方法进行精度,导致回收率为100.3%的百分比,满足接受95-105%的要求。本研究显示了该方法在绿茶样品中进行咖啡因分析的适用性。