本报告是在 Roland Roesch(IRENA 创新和技术中心主任)和 Ricardo Gorini 的指导下编写的。作者包括 Chun Sheng Goh、Ricardo Gorini(IRENA)、Kan Ern Liew、Zoe Tay Hui Yee、Arunchelvi Manie、Long Lit Chew 和 Farah Ezati Saindi(顾问)。本报告受益于 IRENA 同事 Maisarah Abdul Kadir、Carlos Ruiz、Jinlei Feng 和 Paul Komor 的审查和意见。本报告还受益于来自印度尼西亚新可再生能源和能源保护总局、马来西亚能源转型和水资源转型部、菲律宾能源部、泰国替代能源开发和效率部以及东盟能源中心的利益相关者和专家的宝贵审查和贡献。IRENA 谨感谢日本政府对 IRENA 在本报告基础上开展的工作的支持。出版支持由 Francis Field 和 Stephanie Clarke 提供。报告由 Stefanie Durbin 编辑,设计由 Phoenix Design Aid 提供。
SAFS是目前在商业航空中使用的液体燃料,可以将CO 2排放量减少多达80%。可以从多种来源(原料)生产,包括废脂肪,油和油脂,市政固体废物,农业和林业残留物,湿废物以及在边际土地上种植的非食物作物。也可以通过直接从空气中捕获碳的过程合成生产它们。SAF可以被视为“可持续性”,因为它们的原料不与粮食作物或产出竞争,也不需要逐步的资源使用(例如水或土地清理),并且更广泛地不会促进环境挑战,例如森林砍伐,土壤生产力损失或生物多样性损失。虽然化石燃料通过排放以前已锁定的碳来增加CO 2的整体水平,但SAF回收CO 2,该CO 2被原料中使用的生物质吸收在其生命过程中。
随着经济性资源枯竭以及生产向经济性较差的地层转移,美国亨利港天然气现货价格稳步上涨 参考案例 2022 年亨利港天然气现货价格为每百万英热单位美元
自 2017 年以来,日本政府 (GOJ) 的生物燃料标准已包括年度生物燃料目标产量,即事实上的强制要求,即 5 亿升原油当量 (LOE)1 或约 8.24 亿升生物乙醇。日本炼油厂主要通过进口源自生物乙醇的生物乙基叔丁基醚 (ETBE) 以及从进口生物乙醇中生产的少量国产生物乙基叔丁基醚来实现这一目标。2023 年 3 月 31 日,经济产业省 (METI) 下属的自然资源和能源局 (ANRE) 发布了日本新的生物燃料标准,称为《复杂法案》下的通知 3.0,该标准从日本财政年度(4 月至 3 月)2024 财年到 2028 财年生效。ANRE 一直保持 5 亿 LOE(即 8.24 亿升生物乙醇)的年度目标产量。此外,ANRE 将巴西甘蔗基乙醇的默认温室气体 (GHG) 排放量提高至 28.59 g-CO 2 e/MJ,将美国玉米基乙醇的默认温室气体 (GHG) 排放量提高至 36.86 g-CO 2 e/MJ。ANRE 还将运输生物乙醇的温室气体减排目标维持在目前的 55% 水平。不过,ANRE 目前正在审查汽油的温室气体排放值,当 ANRE 发布新值(可能在 2025 年)时,温室气体减排目标将变为 60%。FAS/Japan 估计,到 2023 年,日本以生物-ETBE 形式用于公路燃料的生物乙醇消费量将达到 8.11 亿升,汽油的乙醇混合率为 1.8%。预计日本炼油厂将继续按目标量供应含 ETBE 的生物乙醇;不过,汽油消费量预计将略有下降。因此,FAS/Tokyo 预测日本的乙醇混合率将在 2024 年小幅上升至 1.9%。2024 年 11 月 11 日,METI 宣布计划在不久的将来增加公路车辆的生物乙醇消费量。日本计划在 2030 财年之前商业化推出 E10 汽油。这种 E10 汽油可能包括直接乙醇混合,也可能继续加入 ETBE。此外,为了促进所述的 2040 财年商业化推出 E20 汽油,日本政府计划为 E20 制定新的汽油标准和车辆认证系统。从长远来看,采用可持续航空燃料 (SAF) 是日本政府增加交通运输部门生物燃料利用率计划的关键组成部分。日本国土交通省 (MLIT) 的目标是到 2030 年用 SAF 替代 10% 的传统航空燃料。为了实现这一目标,日本政府计划刺激纯 SAF 2 的国内生产,可能使用进口原料。虽然日本政府没有具体规定这样的要求,预计日本航空公司将寻求使用国际民航组织 (ICAO) 定义的符合国际航空碳抵消和减排计划 (CORSIA) 的燃料。为了消除私营部门的运营不确定性,经济产业省目前正在制定一项新的 SAF 标准,与《综合法案》下的现行生物燃料标准不同。
背景和范围 化石燃料供应着世界上大部分的能源,也为许多日常必需品提供原材料或给料。虽然能源供应越来越脱碳,但燃料、化学品和材料的生产需要碳原子作为给料。然而,通过利用可再生能源和替代碳源,它们的生产可以“脱化石化”。同样,循环经济方法提供了减少外部依赖和从废物中获取其他基本分子给料(包括关键原材料)的空间。因此,这项开拓者挑战赛的重点是开发下一代技术,将当今有问题的废物流转化为未来循环经济的基本组成部分。此外,它特别关注目前不可回收或难以回收的合成聚合物材料(包括不同类型的塑料混合物、聚合物复合材料、微/纳米塑料、未经处理的塑料废物、尿布、橡胶等)、烟气、废水和海水淡化盐水。提案必须针对现实生活中的工业和家庭垃圾
与泛欧交易所上市公司 Transition SA 的合并,打造法国未来地热和低碳锂生产领域的领军企业。此次合并基于 Arverne 完全稀释的投资前估值 1.66 亿欧元和 Transition 股份(已发行或将发行)价值约 1.48 亿欧元。Transition 现已更名为“Arverne Group”。Transition 作为合并的一部分发行的用于对价 Arverne 股份的普通股已在泛欧交易所巴黎的专业板块 ( compartiment profes sionnel ) 上市。在合并的同时,作为私募的一部分,Transition 向现有和新投资者发行了新的普通股,包括 Eiffel Investment Group、ADEME Investissement、Crédit Mutuel Equity、Sycomore AM 和雷诺集团。
从 2034-35 年开始,《欧盟燃料条例》将对使用替代燃料(如非生物来源的可再生燃料 (RFNBO) 和低碳氨)提供更明确的激励措施。委员会将监测和报告属于本条例范围的船舶每年使用的能源中 RFNBO 的份额。如果 2031 年 RFNBO(如可再生氨)的份额低于 1%,则从 2034 年开始,这些燃料将适用 2% 的子目标。同时,二氧化碳强度减排目标将在 2035 年提高到 14.5%。
HVO生产的燃料具有重要的优势:它们可以与常规燃料无缝混合或单独使用。与第二代生物燃料不同,HVO具有与标准燃料相同的化学结构,可以在没有并发症的发动机中100%使用。这种逐渐采用有助于减少温室气体排放,空气污染和化石资源依赖性。对于企业,这为满足不断增长的可持续性需求提供了一个主要的机会,同时最大程度地减少了运营变化。