使用两种硅烷(((3-氨基丙基) - 三乙氧基菌)和(3-甲基丙基) - 三乙氧基硅烷)进行官能化,以分别获得生态友好型胺功能化的GO(GONH)和硫醇功能功能(GOSH)。两个硅烷也被一起使用,以获得胺 - 硫醇双官能化的GO(GOSN)。获得了各种物理化学特征,包括使用傅立叶转换红外(FTIR)光谱仪,热重分析仪和X射线衍射仪的光谱。吸附剂用于对水溶液中Cr吸附的比较研究。将所获得的数据拟合到伪优先(PFO)和伪秒阶(PSO)模型,均质分形伪秒(FPSO)以及Weber-Morris - 莫里斯 - 摩尔斯 - 摩尔斯 - 莫里斯(Weber-Morris)内膜内颗粒扩散(IPD)动力学模型。计算了Langmuir和Freundlich吸附等温模型以及热力学的模型参数。表征结果显示成功的功能化。GONH,GOSH和GOSN分别在水中表现出碱性,酸性和中性pH。胺和硫醇官能团,以及降低的顺序。吸附剂比原始GO具有更高的每单位重量密度,并且热稳定性更好。平衡Cr吸附。PSO和FPSO更好地描述了速率数据。随着溶液的pH含量,Cr吸附降低;最佳吸附在pH 2处记录。吸附过程是理论上的放热过程,即自发过程。平衡吸附数据拟合了GONH的Langmuir吸附等温线模型,而它为GOSH和GOSN拟合了Freundlich。这些吸附剂的Cr吸附能力分别为114、89.6和173 mg/g,分别为GONH,GOSH和GOSN,并且这些吸附能力比几种报道的基于石墨烯的吸附剂要好,并提出了这些吸附剂的潜力。©2020水环境联合会
理论和实验研究均已认识到,优化聚合物-碳纳米管界面对于将碳纳米管的优异性能转化为先进复合材料至关重要。在纳米管和聚合物基质之间构建化学键是形成强界面最有效的解决方案 [5]。这可以通过对碳纳米管进行化学改性来实现,使得附着在纳米管上的功能基团可以有效地与聚合物基质交联。对碳纳米管中的功能基团进行系统工程设计可显著改善复合材料的性能。例子包括合成杨氏模量、拉伸强度和热稳定性大大提高的 SWCNT-尼龙复合材料 [4-6],PAMAM 功能化的 SWCNT/环氧树脂复合材料 [7]。功能化的 CNT 在溶剂和/或聚合物中具有良好的分散性非常重要,因为只有使用解束的纳米管才能实现有效的界面。
摘要:我们在此报告了一种新型两亲性二嵌段肽的合成,其末端结合的寡聚苯胺及其自组装成具有高纵横比(> 30)的小直径(d〜35 nm)结晶纳米管(> 30)。表明,在溶液中形成坚固的高度结晶纳米管中,对质子酸掺杂和脱兴过程非常稳定,可以在溶液中自组装自组装,形成坚固的高度结晶的纳米管中的肽三嵌段分子。通过电子显微镜成像揭示的纳米管组件的结晶管结构和X射线衍射分析的纳米管组件和非官能化肽的纳米管组件的相似性表明,肽是肽的有效有序的结构指导型Oligomers,是有效的有序结构。掺杂的TANI肽纳米管的膜的直流电导率为Ca。95 ms/cm
简介在继续研究潜在的 DNA 双插入剂 1–5 和相关吖啶 6–8 的过程中,我们现在描述了六种新的双(9-氨基吖啶)1–6 的合成及其对 L-1210 鼠白血病细胞的体外细胞毒性。具有半刚性系链的 DNA 双插入剂通常比具有柔性系链的化合物表现出更好的抗肿瘤活性。9–12 例如,二特卡利铵正在临床试验中用于治疗癌症。13 此外,由于平面吖啶环本身是一种出色的 DNA 插入剂,因此多项研究表明吖啶和双吖啶具有抗癌特性也就不足为奇了,14 其中一种是药物安吖啶。15 双插入剂的 DNA 结合和其他特性也已得到充分证实,16–23 新型功能化吖啶表现出独特的物理和生物物理特性。 24–27
Consultancy projects – “Analysis of high broken filament and low mechanical properties of viscose rayon” – Kesoram Industries Ltd (B K Birla Group) “ETP and Zero Liquid Discharge Evaluation” – Mahavir Spinfab Ltd, Unnao (UP) Research project – AICTE sponsored project, “Studies on Soybean fibre blended with Jute and Ramie & their environment friendly chemical processing” In progress - Research project – Ministry国家技术纺织品任务下的纺织品,“用于雾化收获和界面太阳能水净化的工程纤维”,以及机械工程系,IIT Kanpur研究项目 - 国家技术纺织品部下的纺织品部,纺织品部,“官能化纺织品的纺织品,用于种类的纺织品”,作为PI(主要研究者)的领域(主要研究人员)
我们通过层纳米颗粒(LBL NP)报告了与阳离子肿瘤 - 渗透肽(TPP)的表面功能化,同时保持颗粒稳定性和电荷特性。这种策略消除了对肽的结构修饰的需求,并使表面化学物质难以修改或通过共价共轭策略无法访问。我们表明,羧化和硫化的LBL NP都能够容纳线性和环状TPP,并使用基于荧光的检测测定法,以量化每NP的肽载荷。我们还证明了在吸附后保持TPP活性,这表明足够数量的肽具有适当的表面取向,从而有效地在体外摄入了功能化的NP,这是通过流式细胞仪和
b'sandwich排列,其中包含捕获目标 - 信号探针。随后通过监测观察到的亚甲基蓝(MB)的峰值电流变化来检测所得的DNA杂交事件,该峰值电流变化被用作氧化还原物种,并实现了35 AM的检测极限。Wang等。 [5]基于RGO和锰四苯基孢子的A \ XCF \ X80-偶联结构的自组装纳米复合材料开发了DNA生物传感器,导致6 \ xc3 \ x9710 14M的检测极限,在另一项研究中,在另一项研究中,Ye等。 [6]采用了一个转导界面,该界面由捕获的DNA序列,Aunps和Thionines在玻璃碳电极上官能化RGO来构建无标记的DNA生物传感器,并获得了4.28 \ xc3 \ x9710 199的检测极限。 Chen等。 [7]还基于由氧化铜纳米线和羧基官能化的单壁碳纳米管(SWCNT)组成的杂化纳米复合材料(SWCNTS)开发了特定的序列DNA检测。 DNA检测是通过循环伏安法和3.5 \ xc3 \ x9710 15 m的检测极限。 Zhou等。 [8]使用化学上的RGO电极通过差分脉冲伏安法对ssDNA和dsDNA中的四个DNA碱基的无标记电化学检测进行了。 他们达到了2.0 \ XCE \ XBC M的检测极限,线性浓度范围为0.01至10 mm。 在另一项研究中,Zhang等人。 [9]为特定序列检测制造了无标记的DNA传感器。Wang等。[5]基于RGO和锰四苯基孢子的A \ XCF \ X80-偶联结构的自组装纳米复合材料开发了DNA生物传感器,导致6 \ xc3 \ x9710 14M的检测极限,在另一项研究中,在另一项研究中,Ye等。[6]采用了一个转导界面,该界面由捕获的DNA序列,Aunps和Thionines在玻璃碳电极上官能化RGO来构建无标记的DNA生物传感器,并获得了4.28 \ xc3 \ x9710 199的检测极限。Chen等。 [7]还基于由氧化铜纳米线和羧基官能化的单壁碳纳米管(SWCNT)组成的杂化纳米复合材料(SWCNTS)开发了特定的序列DNA检测。 DNA检测是通过循环伏安法和3.5 \ xc3 \ x9710 15 m的检测极限。 Zhou等。 [8]使用化学上的RGO电极通过差分脉冲伏安法对ssDNA和dsDNA中的四个DNA碱基的无标记电化学检测进行了。 他们达到了2.0 \ XCE \ XBC M的检测极限,线性浓度范围为0.01至10 mm。 在另一项研究中,Zhang等人。 [9]为特定序列检测制造了无标记的DNA传感器。Chen等。[7]还基于由氧化铜纳米线和羧基官能化的单壁碳纳米管(SWCNT)组成的杂化纳米复合材料(SWCNTS)开发了特定的序列DNA检测。DNA检测是通过循环伏安法和3.5 \ xc3 \ x9710 15 m的检测极限。Zhou等。 [8]使用化学上的RGO电极通过差分脉冲伏安法对ssDNA和dsDNA中的四个DNA碱基的无标记电化学检测进行了。 他们达到了2.0 \ XCE \ XBC M的检测极限,线性浓度范围为0.01至10 mm。 在另一项研究中,Zhang等人。 [9]为特定序列检测制造了无标记的DNA传感器。Zhou等。[8]使用化学上的RGO电极通过差分脉冲伏安法对ssDNA和dsDNA中的四个DNA碱基的无标记电化学检测进行了。他们达到了2.0 \ XCE \ XBC M的检测极限,线性浓度范围为0.01至10 mm。在另一项研究中,Zhang等人。 [9]为特定序列检测制造了无标记的DNA传感器。在另一项研究中,Zhang等人。[9]为特定序列检测制造了无标记的DNA传感器。将DNA固定在用石墨烯,Aunps和Polythionine(Pthion)修饰的玻璃碳电极上。通过不同的脉冲伏安法检测到杂交,并且在0.1 pm至10 nm的动态范围内达到了35 fm的检测极限。Bo等人开发了石墨烯和聚苯胺的电化学DNA生物传感器。[10]用于DPV检测辅助DNA序列,并达到了'
反应性氧化物(ROS)对活细胞生存能力和增殖的影响很多。由于它们与不同类型的生物分子反应的能力,ROS参与了许多细胞功能1。维持氧化还原稳态的能力至关重要,失衡会导致各种可能的疾病。可以利用受控的ROS产生以产生细胞中的氧化应激,导致细胞死亡,目的是开发用于抗癌治疗的药物和无药物治疗工具。氨基丙基官能化的ZnO NC(ZnO-NH 2 NC)被证明可以使用已批准的医疗设备Lipozero G39刺激超声(US)时,能够以可调且可重复的方式产生ROS。羟基自由基的产生是美国暴露下惯性空化的结果。
纳米材料具有独特的性质,例如高表面积、增强的反应性以及可调的物理和化学特性,并且在重金属检测方面显示出巨大的潜力。特定功能化的量子点可与特定分析物结合。特定的结合能力会引起电子特性的变化,从而引起传感器基质的化学电阻响应。从这个角度来看,开发了一种与汞离子结合的传感器基质。然后将该传感器基质印刷在条带上,以便能够测量条带暴露于分析物(甲基汞)时电阻率的变化。可以使用掌上设备测量电阻率的变化,该设备显示水样中的汞污染水平。在掺有甲基汞的真实水样以及鱼血样本中测试了污染水平。
