通过 ALD 循环次数可以实现区域选择性沉积 (ASD)。然而,对薄膜生长的横向控制,即区域选择性沉积 (ASD),对于 ALD 来说要困难得多。尤其微电子应用需要 ASD 来满足制造要求,因为关键特征尺寸缩小到纳米级,而且通过自上而下的光刻方法进行图案化变得越来越具有挑战性。[2,3] 光刻掩模需要以纳米级精度对准,即使是最轻微的掩模错位也必然会导致边缘位置误差 (EPE)。在 ALD 中实现 ASD 的传统方法可分为三大类:1) 非生长区域钝化;2) 生长区域的活化;3) 使用固有选择性沉积化学。在类别 (1) 中,非生长区域用钝化自组装单分子层 (SAM) 或聚合物膜进行功能化。 [4,5] 通常,当前体吸附在非理想组装或部分降解的 SAM 上时,会发生选择性损失。吸附在 SAM 上的前体分子作为后续前体剂量的反应位点,从而丧失选择性。[2] 在下一个处理步骤之前,还必须完全去除钝化层。在类别 (2) 中,生长区域表面在 ASD 之前进行功能化,以实现薄膜生长。[6–7] 然后,薄膜仅沉积在功能化表面上,而其他区域保持清洁。这种方法规定了非生长和功能化生长表面上的薄膜成核的明显对比。因此,它主要限于金属 ALD 工艺,因为金属表面比其他表面更容易成核。此外,需要仔细控制剂量以维持生长选择性。由于 ASD 的活化层被 ALD 膜掩埋,因此下一个处理步骤可以直接进行。在类别 (3) 中,即固有选择性 ALD,选择性完全由前体与基底上不同材料表面之间的反应决定。在正在制造的薄膜器件结构表面上,不同的材料暴露于 ALD 前体,但薄膜仅生长在某些优选材料上,从而定义生长区域。这是真正的自下而上的处理,将整体图案化步骤减少到最低限度。由于图案自对准,因此排除了 EPE。出于这些原因,(3) 是 ASD 的一个非常有吸引力的选择,但控制表面化学以在几个 ALD 循环中保持 ASD 极具挑战性。因此 (3) 主要限于金属的 ASD。[8–9]
在我们的实验室中,我们致力于开发用于检测蛋白质和核酸的电子生物传感器。这些传感器由基于功能化导电纳米碳材料(例如原子级厚度的石墨烯或碳纳米管)的场效应晶体管 (FET) 器件制成。纳米碳 FET 是一种用于定量检测生物标志物的有前途的技术,具有简单、低成本制造和无标记实时电读数等独特优势。本次实习的目标是优化生物分子和石墨烯器件之间的表面相互作用,结合使用纳米传感器的电测量、高分辨率表面显微镜和/或计算方法。这些实验将用于优化这些传感器检测癌症生物标志物的灵敏度指标。
特邀贡献 研讨会“从表面到设备:纳米结构氧化物和碳材料的新视角”——I-Lamp(先进材料物理跨学科实验室),布雷西亚(意大利),2022 年 12 月 12 日“基于功能化石墨烯的电子鼻用于 NO 2 鉴别——特邀演讲。 MNE2022 和 Eurosensors 国际会议,鲁汶(比利时),2022 年 9 月 19-23 日“基于纳米结构碳的呼吸组学电子鼻”——特邀演讲。 研讨会“纳米结构碳材料和设备的趋势”,线上活动,2022 年 1 月 28 日“基于纳米结构碳的呼吸组学气体传感器阵列:从 CNT 到石墨烯”——特邀演讲。研讨会“大学里的博士生”,文学与艺术学院,线上活动,2020 年 11 月 18 日“物理学与医学之间:电子鼻如何嗅出疾病”——受邀演讲。第 58 届 AIF 全国代表大会(意大利物理学教授协会),布雷西亚(意大利),2019 年 10 月 16 日至 19 日“物理学与医学之间:嗅出疾病的电子鼻”——受邀演讲。研讨会“从表面到设备:纳米材料之旅”,布雷西亚大学(意大利),2019 年 4 月 11 日“使用碳纳米管的呼吸组学”——受邀演讲。会议精选贡献 Giornata Italiana dell'analisi dell'espirato,比萨(意大利),2023 年 1 月 10 日“基于碳纳米结构的电子呼吸组学”——口头报告。 石墨烯周 2022 - 国际会议,慕尼黑(德国),2022 年 9 月 5 日至 9 日“通过用 2,5-二芳基四唑功能化的石墨烯基传感器阵列识别干扰气体中的氨气”——海报展示
基于Au纳米颗粒(NPS)的新型杂化纳米复合材料的胶体合成,通过– rating在1-氨基吡啶(AP)功能官能化的氧化石墨烯(RGO)上堆叠进行了优化,以探索实验参数对最终纳米结构的影响的影响。所得的纳米复合材料在有机溶剂中表现出可分散性,以修饰筛网碳电极。电化学分析揭示了多巴胺检测能力。AP链接器促进了NP-RGO电子耦合,影响电导率和AU NP大小依赖性电分析活性。混合纳米植物对多巴胺的确定表现出了优越的电效率,展示了现代医学中护理生物标志物监测的潜力。
Carbon Capture的创始人Sam(Samir)Adams和Fernando Sanchez补充说:“我们与Haydale Graphene Industries的合作取得了令人鼓舞的结果,超出了我们的期望。现在,我们准备扩大到革命性直接空气碳捕获解决方案的大型演示单位。这完全符合我们创建可持续,可扩展的碳捕获技术的使命。吸附二氧化碳中功能化石墨烯的潜力可能会改变城市碳捕获的游戏改变。我们有信心我们与Haydale的合作将彻底改变该行业,并提供一种具有成本效益的工具,以打击全球过多的温室气体。”
在这项工作中,开发了一种低成本且可扩展的制造技术,以将高度分散的石墨烯纳入环氧树脂和聚氨酯(PU),这些石墨烯是使用最广泛的聚合物材料之一。该研究涵盖了不同结构的广泛的石墨烯材料,包括合成的原始产物和功能化的产品,用作聚合物树脂的增强填充剂。此外,还研究了由血浆增强的化学蒸气沉积(PECVD)和石墨烯纳米片(GNP)产生的单层或几层石墨烯,这些石墨烯和石墨烯纳米片(GNP)(GNPS)(由十二或数十个石墨烯层组成,由石墨的外观产生。此外,在本文中还讨论了用混合石墨烯填充剂加强的环氧复合材料的性能以及石墨烯材料与其他填充剂的组合。
抽象旨在靶向在黑色素瘤细胞中表达的维生素D受体(VDR),维生素D 3功能化杂交脂质脂质 - 脂质 - 聚合物纳米颗粒(HNP-VDS),该粒子(HNP-VDS)包含聚(乳酸 - 糖甘氨酸酸)(PLGA)核心(PLGA)核心(PLGA)核心和脂质壳的氢化酶(Sodylocation),磷酸化磷酸盐(HNP-VDS)(SPCC)磷酸酯(Hoplocy)(HNP-VDS)(HNP-VDS)(HNP-VDS)合成了1,2-二甲酰基-SN-甘油-3-磷酸乙醇胺-N [琥珀酰基(聚乙烯基)-2000(DSPE-PEG 2000)。将纳米载体优化为脂质表面积覆盖率为97%。体外药物释放研究显示,在最初的24小时内,初始爆发释放,然后是扩散运输。最后,细胞摄取实验表明,HNP-VD有效地获得了B16黑色素瘤细胞,从而导致有前途的媒介物可以提供用于黑色素瘤治疗的治疗剂。
与各种亲电伙伴进行环加成反应,5 Zhao 等人和 Glorius 等人独立报道了[5 + 4] 环加成反应,以合成不同大小的高度功能化的环。6a、b Glorius 等人随后通过协同 N-杂环卡宾有机催化和钯催化,实现了乙烯基碳酸亚乙酯与烯醛的首次对映选择性[5 + 2] 环化反应,6c 而 Liang 等人报道了配体控制的乙烯基碳酸亚乙酯与萘酚之间的[3 + 2] 和[3 + 3] 环加成反应。7 尽管进行了这些广泛的研究,但我们不知道有关乙烯基碳酸亚乙酯[4 + n] 环加成反应的报道。 [4 + n] 环加成反应,尤其是 [4 + 2] 环加成反应,在合成有机化学中起着关键作用,因为它们可以快速生成具有挑战性但具有合成价值的环状化合物
助理。教授OKAN BAKBAK个人信息办公室电话:+90 383 291 0291扩展:0电子邮件:obakbak@yildiz.edu.tr Web:https://avesis.yildiz.edu.tr/obakbak地址:obakbak@yildiz.ediles.edus.edu.tr International Ids Ids iDS clays: 0000-0003-2074-1300 PUBLONS / WEB of Science ResearcherID:AAZ-4879-2020 scopusid:57222223222496 Yoksis研究人员ID:265211教育信息博士学位,Yildiz技术大学,研究生学院,研究生学院,自然和应用科学,MakineMühendisliunucutiuniutiuniuniganiunucationfen forky forne of forkey fen forky fen turkey 2018-2024,2224-20224 Bilimleriensititüsü,MakineMühendisliği,土耳其,2015年至2018年,萨卡里亚大学,萨卡里亚大学,英吉尼大学教职员工,MakineMühendisliği,2011年土耳其 - 2015年 - 2015年,2015年的论文,论文杂志机械工程的消耗,2024年研究生,KöşeKonnakKonnakKondüksiyonLarınıntatikeNIkeAnınınınınİniCelenmesi,sakaryaüniversitesi,MühendislikFakültesi,MakineMühendislisirizy,MakineMühendislisliz的学术phakinizial thecriptial togratizitik工程学,机械工程局部,2024年 - 继续研究助理,Yildiz技术大学,机械工程学院,机械工程deparment of Mechanical Engineering,2017年至2024年出版的期刊文章,由SCI,SSCI和AHCI I.实验性研究对官能化石墨烯对环氧bakbak O.的蠕变行为的影响,Colak O.增强塑料和复合材料的杂志,第43卷,第19-20页,第1133-1150页,2024年(SCI-Expended)II。石墨烯 - 环氧纳米复合材料的压力放松行为:石墨烯分数,应变水平和温度ACAR A.,Bakbak O.,Colak O.
