光学原子钟和光学时间传输的最新进展为基础物理测试和计时应用的精密计量提供了新的可能性。这里我们描述了一个太空任务概念,该概念将把最先进的光学原子钟放置在地球偏心轨道上。高稳定性激光链路将把轨道航天器的相对时间、范围和速度连接到地面站。这次任务的主要目标是测试引力红移,这是广义相对论的经典测试,灵敏度是当前极限的 30,000 倍。其他科学目标包括其他相对论测试、增强对暗物质和基本常数漂移的搜索,以及建立高精度国际时间/测地线参考。1. 简介
钛合金在500~600℃的高温下具有高强度,可用于飞机的结构件、紧固件和发动机部件,此外还用于汽车发动机部件和/或排气系统,根据其使用情况,需要具有强度、疲劳强度、断裂韧性、抗蠕变性和抗氧化性等各种性能。钛合金的微观结构、织构、化学成分等对疲劳性能的影响主要在飞机领域进行研究,通过引入故障安全和损伤容限设计,提高了可靠性。1-3) 最近,正在进行如下所述的停留疲劳研究以及利用集成计算材料工程(ICME)来一致预测其疲劳寿命的研究和开发。4)日本除了飞机之外,还开发了汽车、消费品(例如高尔夫球杆头)和医疗设备的应用。因此,除了对钛合金的疲劳、裂纹扩展和断裂韧性的基础研究外,5,6)还进行了大量与各自用途所需的性能相关的研究。
罗马尼亚作者的农业主义养老金案件:博士学位。经济学家Daniela Antonescu博士IOAN SURDU摘要:食物浪费是一个普遍的过程,影响环境和资源(自然,财务,卫生等)。在个人层面(家庭预算)和社会层面上都感到负面影响,通常它们很难作战。从现有的定量和定性分析中,即使在整个供应链中产生了食物浪费,家庭水平的食物浪费也占其总数的50%以上。还指出,某些经济部门的活动性质对浪费食物有更大的偏爱(例如Horeca或大型零售商店)。对罗马尼亚山区的农业旅游旅馆进行了案例研究表明,在其水平上,食物浪费的尺寸减少了。这是由于家庭精神以及一代世代相传的道德和精神价值观,这增加了对罗马尼亚山脉的热爱和尊重。减少这种现象的解决方案采取不同形式的表现形式,从对现象本身的意识到重新思考部分,促进良好的实践,创新的包装等。考虑到上述文章,本文旨在更好地了解食物浪费现象,并确定可以解决这种现象的可行解决方案。
WP4。绝对中微子质量1。简介量子传感器可能会在实验室测量绝对中微子质量的实验室测量中取得突破。Katrin实验采用的当前领先技术是基于磁绝热准直和静电(MAC-E)滤波,该技术无法扩展到Katrin的0.2 eV敏感性。宇宙学目前提供了绝对中微子质量的最敏感探针,但依赖于模型,不是实验室测量的替代品。中微子振荡的结果表明,β衰变实验中的敏感参数电子中微子质量具有严格的下限。对于正常有序的频谱,它不能小于50 MEV,而9 MEV [1],如图1。它也与中微子的主要或狄拉克性质无关。
电子邮件:roberto.moretti@mib.infn.it摘要 - Quantum Sensing是一个快速扩展的研究领域,在基本物理实验中找到了其应用之一,例如寻找弱EM耦合的暗物质(DM)候选候选者,NAINELELENEXION和DALK PHOTCON。超导Qubits和制造技术的最新发展对量子传感的推动进展产生了重大贡献,这要归功于它们对AC领域的高灵敏度,并且有可能基于量子非demolition(QND)[1]和直接检测来利用基于量子非demolition(QND)的检测方案。QND包括在量子系统和被困在空腔中的光子之间建立一个纠缠状态,从而使我们能够在不吸收的情况下推断光子的存在,从而实现多个测量值,从而指数抑制了深色计数速率。相反,直接检测方案依赖于共振,低功率,暗物质诱导的交流场,其量子态缓慢地旋转速度状态,该量子态可以在高碳状态的thermons和fluxoniums中衡量。此贡献是INFN QUB-IT协作的一部分,该协作旨在通过量子超导设备来推进微波单光子检测。演示将说明QUB-IT状态以实现数百微秒连贯的时间和工程DM检测设置。这项工作研究了平面transmon量子芯片芯片的建模和设计优化,利用集结振荡器模型(LOM)[3]和能量参与率(EPR)[4] [4]来提取汉密尔顿参数。基于EPR的新型策略是为了增强通过有限元模拟估算两级系统(TLS)损失估算的准确性。还讨论了通过耦合的多Qubit系统提高DM敏感性的可能性,以及在国家标准技术研究所(NIST)制造的单量芯片(NIST)的表征以及模拟和测量的Qubit参数之间的彻底比较,例如弹性频率,Anharmormonity和Anharmormonity和Anharmonicity and coupling Lustertic lofter与读取结构。这项工作中提出的初步结果有望进一步增强量子传感平台的灵敏度和可靠性,这可能会超过当前光DM搜索实验的局限性。
科学突破通常基于技术和方法论突破。作为一家领先的基础研究所,I2BC处于技术进步的最前沿,开发了创新的科学方法论,工具和方法。在I2BC上,研究人员研究了整合细胞生物学,探索了从单分子到整个生物的各种尺度。凭借我们广泛的专业知识和专业知识,我们开发了创新的技术和工具,这些技术和工具在多个行业中具有许多应用,从农业到药物领域。
道路/自动驾驶汽车以及时机与同步在农业,测量和海上实施has in in of Araim接收器,航空,海上和铁路中的ARAIM接收器长期海上新的标志
•提高知识并增强重症监护专业人员的技能•促进知识的实施并获得能力,以建立重症监护系统•以促进交流最佳实践并开发国际网络•通过参与危命患者的管理来积极地获得重症监护医学的工作知识。•了解危重患者中疾病的综合性质以及对此类患者的管理的跨学科方法。•了解重症患者常见疾病常见的疾病的病理生理学。•熟悉气道管理和呼吸机护理原则。•能够识别有风险的患者,进行适当的身体检查,制定问题清单并在高级人员的指导下进行治疗。•熟练掌握通常在重症监护单元中进行的程序。•在管理心脏骤停和急性复苏的患者中变得舒适。•建立重症监护病房的管理能力•通过教育,研究和专业发展,促进对重症患者及其家人的多学科护理标准。
扑克是一种大型复杂、信息不完全的游戏,已被列为人工智能的主要挑战问题。最近出现了一系列突破,最终出现了一些代理,它们在双人无限注德州扑克游戏中成功击败了最强的人类玩家。最强的代理基于近似纳什均衡策略的算法,这些算法存储在大量二进制文件中,人类无法理解。最近的一项研究探索了从强大的博弈论策略中推断出人类可以理解的知识的方法。当人类是最终决策者时,这将很有用,并允许人类从大量算法生成的策略中做出更好的决策。利用机器学习技术,我们发现了扑克策略的一条新的简单基本规则,与最佳先前规则相比,该规则可以显著提高性能,并且人类玩家也可以轻松应用。