蔓越莓水果腐烂(CFR)是一种主要的疾病复合体,显着影响蔓越莓作物,导致大量产量损失。在过去十年中,CFR越来越有问题,尤其是在高产和新品种中,据报道损失范围从50%到100%。此外,蔓越莓行业还面临着对使用广谱杀菌剂(例如Chlorothalonil和Mancozeb)的限制,因此需要探索替代管理策略。这项研究于2021年至2024年在马萨诸塞大学 - 阿默斯特蔓越莓站进行,评估了Frac组7、9和12的新型杀菌剂。单独测试并与硫代蛋白(FRAC 11)结合了活性成分 - 苯并叶二氟,pydi lumetofen,cyprodinil和流胞菌。这些杀菌剂在降低CFR发病率和提高产量方面的效率在蔓越莓品种“ Demoranville”,“ Ben Lear”和“ Stevens”和“ Stevens”上评估,并在Bloom早期和晚期阶段进行了应用。在2021、2023和2024中观察到果腐发生率和产量的显着差异。处理含有Pydi umetofen,pydi limetofen&fludioxonil和Benzovindi Floupyr的处理,当与硫代蛋白结合使用时,始终导致较低的腐烂率和较高的产率。含有cyprodinil&fludioxonil加上阿佐昔霉素的处理,仅在2021年进行了测试,也导致腐烂的发病率和较高的产率。这些发现突出了FRAC组7、9和12的新型杀菌剂的潜力,作为CFR管理的有效替代方法。他们的使用可以使CFR管理工具包多样化,减轻杀菌剂的耐药性并减少环境影响,从而解决了增加杀菌剂法规所带来的挑战。
由Maziar Divangahi领导的一组科学家,Maziar Divangahi是McGill医学和健康科学学院的教授,McGill University Health Center研究所的高级科学家,证明,在暴露于流感的小鼠之前,Beta-Glucan会降低肺部损害,降低肺部功能,并降低肺部功能,并降低肺部的风险和死亡的风险。
施用生物固体可以提高土壤肥力和作物产量,但也伴随着重金属和抗生素引入的风险。在重金属污染环境下,利用丛枝菌根真菌 (AMF) 是一种有效的策略,可以增强土壤微生物群落稳定性和植物对重金属的耐受性,并减少抗生素抗性基因 (ARG) 的传播。本研究通过盆栽试验探究了接种 AMF 对土壤和植物重金属含量以及土壤微生物群落的影响。结果表明,接种 AMF 显著提高了植物生物量,并降低了土壤和植物重金属含量。虽然接种 AMF 不会改变细菌和真菌群落的组成,但在较高的生物固体浓度下,它增加了细菌的多样性。值得注意的是,接种 AMF 增强了微生物网络的复杂性,并增加了关键类群的丰度。此外,在接种 AMF 的土壤中,一些对重金属具有高抗性的有益微生物得到了富集。宏基因组分析显示,与未接种AMF的土壤相比,接种AMF的土壤中移动遗传元件(MGE)基因IS91减少,重金属抗性基因增加。MGE介导的耐药基因(ARG)扩散减少的可能性是本研究的主要发现之一。需要注意的是,本研究还检测到接种AMF的高生物固体改良土壤中少数耐药基因的富集。总体而言,接种AMF可能是一种有效的农业策略,可以减轻与生物固体、重金属和抗生素耐药性相关的环境风险,从而促进可持续的土壤管理和健康。
d蛋白石海岸大学,环境化学和生活12(UCEIV)的互动单位(UCEIV),UR4492,SFR CONDORCET FR CNRS 3417,50 RUE FERDINAND BUISSON,62228,62228,13 CALAIS,法国。14 *蛋白石海岸大学的环境化学和相互作用单位(UCEIV)(UCEIV),UR4492,SFR CONDORCET FR CNRS 3417,50 RUE FERDINAND BUISSON,16 622228 RUE FERDINAND BUISSON,CALAIS CALAIS。17
摘要真菌为人类提供生态和环境服务,以及健康和营养益处,对数量行业至关重要。来自真菌的发酵食品和饮料产品在市场上流通,产生了数十亿美元。然而,真菌的最高潜在货币价值是它们在蓝色碳交易中的作用,因为它们能够在土壤中隔离大量碳。没有关于真菌全球货币价值的结论性估计,主要是因为外推数据有限。本研究概述了真菌对全球经济的贡献,并首先尝试量化真菌的全球货币价值。我们对54.57万亿美元的估计提供了一个可以分析和改进的起点,突出了真菌的意义,并提供了对其价值的欣赏。本文确定了真菌提供的不同经济有价值的产品和服务。通过向所有重要的真菌产品,服务和工业应用赋予货币价值,强调了它们在生物多样性和保护中的重要性。此外,如果真菌的价值良好,则将在未来的政策中考虑有效的生态系统管理。
广泛使用农药和除草剂已导致土壤和水污染,对生物多样性和人类健康产生负面影响。Microfungi通过酶促过程有助于这些化学物质的降解,从而提供了一种环保替代方案的常规修复技术。了解真菌介导的生物降解机制对于可持续农业和环境实践至关重要。
细菌、真菌和癌细胞群在接受治疗后的一个共同特征是,存在耐受性和持久性细胞,这些细胞能够存活,有时甚至在通常具有抑制或致死浓度的药物存在下也能生长,这是由群体中单个细胞之间的非遗传差异所致。在这里,我们回顾和比较了有关细菌、真菌和癌细胞中药物存活的数据,以揭示共同的特征和细胞途径,并指出它们的独特之处。这种比较工作还允许跨领域思想的相互交流。我们特别关注基因表达变异性在细胞间非遗传异质性出现中的作用,因为它代表了大多数持久性现象起源的可能共同的基本分子过程,并且可以进行监测和调整以帮助改善治疗干预。
Abltrak。过多的化肥可以增加碳排放量并加速土地退化。要克服这一挑战,需要缓解努力,例如使用生物膜形成的微生物减少蒸发和家庭废物作为堆肥和液体有机肥料,以提高土壤降解的土壤质量。这项研究旨在确定生物膜生物肥料,堆肥和液体有机肥料(LOF)对Pakcoi植物生长的影响。This study used a three-factor (fertilizer type, inorganic fertilizer doses, and organic fertilizer doses) with a Complete Group Randomized Design with 14 treatments (N0: Control, N1: 100 % NPK + 0 Organic fertilizer, NB 2: 75% NPK + 25% BFBF, NB 3: 50% NPK + 50% BFBF, NB 4: 25 % NPK + 75% BFBF,NB 5:0%NPK + 100%BFBF,NP 2:75%NPK + 25%LOF,NP 3:50%NPK + 50%LOF,NP 4:25%NPK + 75%LOF,NP 5:0 25%NPK + 75%堆肥,NR 5:0%NPK + 100%堆肥)。这项研究中的观察参数包括植物高度,叶子数量和宽度。数据分析是使用ANOVA进行的,并继续使用DMRT进行。结果表明,与对照相比,Pakchoi植物的50%NPK + 50%生物肥料治疗可以增加植物的身高,叶片宽度和新鲜重量,而100%LOF的叶子数量比对照组高16,69%。这些发现通过减少有助于碳排放的化肥,同时采用可持续的农业实践,利用生物膜和有机材料来提高生产力,同时维持生态系统健康,从而支持气候变化策略。
图 1 利用植物遗传资源改良作物的有用特性。植物遗传资源(具有当前或潜在价值的植物遗传材料)包括作物地方品种——遗传上多样化的作物品种,是传统种子保存系统而非现代植物育种的产物,通常与当地适应性以及边缘农业环境中的传统农业实践有关(Maxted 等人,2020 年);作物野生近缘种(CWR)——与作物关系相对密切的野生物种,可以使用常规或基因工程技术与作物杂交,将野生物种的理想特性引入作物;以及未充分利用的作物。传统上,野生植物通过随意选择和谱系育种进行驯化和改良。用于表征育种系的现代技术包括基因组大小关联研究 (GWAS) 和自动表型分析。加速育种周期的方法包括标记辅助育种——识别和使用与促进有利性状的等位基因相关的遗传标记,以便在比表型筛选成熟植物更年轻、成本更低的情况下从杂交中识别合适的后代;基因组选择——从全基因组扫描遗传变异中进行定量统计预测;以及基因改造——越来越多地使用 CRISPR/Cas 技术进行