鹰嘴豆(Cicer Arietinum L.)是最重要的谷物豆类之一,每年产量为1587万吨(Faostat,2021)。它是一种自授粉的二倍体农作物,基因组大小约为740 mb,并且在世界各地的干旱和半干旱地区都大量生长(Varshney等,2013)。鹰嘴豆的重要性在于其对共生氮固定及其饮食蛋白,维生素和必需矿物质的内在潜力。鹰嘴豆生产对于主要生活在发展中的人们而言,鹰嘴豆生产对于粮食安全和提高饮食的营养质量至关重要。全球鹰嘴豆产量近年来显着上升(Faostat,2021)。但是,满足不断增长的需求要求鹰嘴豆作物的生产率提高。提高农作物的生产率将需要对诸如Fusarium Wilt(FW)和Ascochyta Blight(AB)等毁灭性疾病的可持续管理,这使鹰嘴豆种植极大的风险。fw,由土壤传播真菌,镰刀菌f。 sp。ciceris(foc)是全球鹰嘴豆最普遍的疾病之一。fw导致产量损失从10%到100%不等,具体取决于品种的可见性和合适的气候条件(Sharma等,2012)。由于FW是一种土壤传播疾病,因此难以通过作物旋转策略或化学控制来管理。因此,使用对FW有抵抗力的品种是最具成本效益,有前途和环境可持续的策略来实现这种疾病。在这个方向上,据报道,用于FW耐药性的几个定量性状基因座(QTL)通过分子育种开发了抗FW-抗性品种(Garg等,2018; Sabbavarapu等,2013; Varshney等,2014)。然而,病原体的遗传变异性很高,导致毒力的多样性,并导致可用来源的耐药性分解(Sharma等,2012)。要加快分子育种过程或通过基因编辑方法发展抗性品种,必须深入了解鹰嘴豆中FW耐药性的分子机制。
日期:2024年10月28日,星期一,12:00–17:00(日本标准时间)地点:多用途RM,1楼,2 Nd Buid,Fuchu-Campus,Tokyo农业与技术大学(TUAT)3-5-5-8 SAIWAICHO,FUCHU 335--0026,TOKEO,TOKEO,TOKEO,TOKYO,TOKEO,TOKYO,TOKYO,TOKYO,URL: https://www.tuat.ac.jp/outline/overview/access/fuchu/campus_map/ Zoom会议:https:///tuat-jp.zoom.us.us/j/82734368162?
(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者此版本于 2022 年 2 月 26 日发布。;https://doi.org/10.1101/2022.02.25.481987 doi:bioRxiv preprint
本研究的主要目的是分离和形态学鉴定与大豆植株相关的真菌以及乌兹别克斯坦大豆种植田土壤层中的真菌。通过对从田间调查中采集的 160 个大豆植株部分进行真菌学研究,分离出 95 种腐生和植物病原真菌菌株,根据种类分配,其分布如下:链格孢属 3%、菊池尾孢 3%、毛霉属 3%、炭疽菌 3%、灰葡萄孢 3%、F. Heterosporum 4%、Penissulium spp. 7%、镰刀菌属。 8%、链格孢属9%、木霉属9%、黑曲霉10%、黄色镰刀菌11%、尖镰孢菌13%、镰刀菌14%。通过对土壤样品进行真菌学研究,共回收了40个真菌分离株,其种类分配如下:链格孢属、镰刀菌属、木霉属、尖镰孢菌、黄色镰刀菌、链格孢菌、镰刀菌、黑曲霉、Penissulium sp. 毛霉属。本研究获得的真菌分离株可用于促进乌兹别克斯坦大豆病害有效综合管理的发展。
摘要:本研究研究了约瑟夫·阿约巴巴洛拉大学(Jabu)的两个垃圾场的微生物学评估。垃圾场是环境污染的主要来源,它构成了载体和其他能够传播或引起疾病的滋扰生物的栖息地。这项研究的目的是隔离和鉴定jabu中各种垃圾场中存在的微生物。在每个位于标有A-C的位置的不同位置收集了总共3个土壤样品。使用染色技术和生化测试鉴定并表征了获得的分离株。S1的总细菌计数范围从10.2 x 10 3 cfu/g到20.1 x10 3 cfu/g,而S2的计数范围为5.4 x 10 3 cfu/g到9.4 x10 3 cfu/g。S1的总真菌计数范围从4 x 10 3 sfu/g到8 x 10 3 sfu/g,而S2的计数范围为2 x 10 3 sfu/g到6 x 10 3 sfu/g。获得了八个元素(大肠杆菌,klebsiella,proteus,proteus,serratia,serratia,entobacter,micrococcus和pseudomonas)和两个分离株(枯草芽孢杆菌和枯草芽孢杆菌和葡萄球菌表皮菌),以获得革兰氏染色。 获得了总共9个真菌分离株(A. flavus,A。Flavus,A。Niger,Mucor,cladosporium,Rhizopus stolonifer,Rhizopus oryzopus oryzae fusarium fusarium和Penicilium)。 从这些实验结果中,发现病原微生物存在于各种垃圾场的土壤样品中。获得了八个元素(大肠杆菌,klebsiella,proteus,proteus,serratia,serratia,entobacter,micrococcus和pseudomonas)和两个分离株(枯草芽孢杆菌和枯草芽孢杆菌和葡萄球菌表皮菌),以获得革兰氏染色。获得了总共9个真菌分离株(A. flavus,A。Flavus,A。Niger,Mucor,cladosporium,Rhizopus stolonifer,Rhizopus oryzopus oryzae fusarium fusarium和Penicilium)。从这些实验结果中,发现病原微生物存在于各种垃圾场的土壤样品中。
控制土传疾病是番茄生产的主要问题之一。本研究旨在调查使用富含细菌和真菌的蚯蚓堆肥对感染根结线虫 (Meloidogyne javanica) 和枯萎病 (Fusarium oxysporum) 的番茄植株生长参数的影响。蚯蚓堆肥的应用量包括控制量、最佳量和过量量。生物防治剂是菌根真菌 (Glomus mosseae) 和两种拮抗细菌 (枯草芽孢杆菌和恶臭假单胞菌)。这些生物防治剂可单独使用、二元组合使用,也可在不同蚯蚓堆肥应用量下以三元组合使用。实验结束时测量了生长参数,包括茎干湿重、根干湿重和叶绿素指数。结果表明,在两种水平上施用蚯蚓堆肥以及在所有组合处理中接种生物防治剂,显著 (P < 0.001) 改善了感染病原体的植物的生长参数。在两种水平的蚯蚓堆肥和感染镰刀菌的三种生物防治剂组合中获得的大多数研究参数最高,而在蚯蚓堆肥施用和生物防治剂以及感染两种病原体的对照条件下获得的生长参数最低。总体而言,我们的研究结果表明,蚯蚓堆肥和生物防治剂的组合使用在提高番茄植株对根结线虫和镰刀菌的防御能力方面具有显著效果,因此可以提高植株的生长水平。
ROF Paul Nicholson领导着一组研究人员,研究了约翰·英恩斯中心(John Innes Center)小麦抗病性的遗传基础。主要从事镰刀菌疫病的工作,他还对新疾病进行研究 - 小麦爆炸。fusarium是两种疾病中更复杂的,尽管有“已知”的抗药性基因,但围绕这些疾病是否是正确的抗性基因,凸显了保罗。“其他群体已经确定了两个基因,但我们的研究不支持它们。我们相信我们已经确定了一个抗药性基因,但是没有证据就无法公开它,证明了这种疾病的工作有多困难。”他说,在镰刀菌方面的相互作用不仅仅是遗传抗性,而是为了消除可取的因素,以防止疾病劫持和殖民植物“使用抗性基因,这些真菌对其进行反应和抗性,但是真菌必须产生蛋白质才能识别。在某些情况下,真菌实际上并不需要蛋白质,因此没有它就会发展,使植物视而不见。
作者:O Mesguida · 2023 · 被引用 22 次 — parvum,当这种病原体在用镰刀菌处理后 7 天接种时,植物防御反应会启动该病原体 [32]。2.1.3。使用卵菌进行生物防治。
在本研究中,通过刺激番茄植物中生化防御和生理生物化学性能,研究了促进真菌植物生长(PGPF)的改善能力。从Beta ufgaris Rotosphere培养的土壤(Tamiya,Fayoum省,埃及)中总共分离了25种真菌分离株。这些真菌分离株的特征是某些植物生长促进活性代谢产物的产生,从而增强植物生长并抑制疾病。选择了四种真菌分离株作为植物生长促进最多的。四个真菌分离株在形态上被鉴定为尼日尔曲霉,弗拉夫斯,粘液sp。和青霉sp。在温室条件下,用这些真菌治疗的番茄植物分别对枯萎病显着降低。生化防御,例如渗透压,氧化应激和抗氧化剂酶的活性,在种植后60天进行。结果表明,氧化孢子菌株对番茄植物的高度破坏性作用为PDI 87.5%。此外,适用于感染番茄的PGPF滤液改善了渗透液,总苯酚和抗坏血酸。有趣的是,枯萎病对番茄植物的有害影响大大降低了,从降低的MDA和H 2 O 2水平可以明显看出。因此,这些结果强调,土壤含有拮抗真菌提供了几种植物生长 - 促进真菌(PGPF),可以将其作为番茄植物中强大的生物控制剂利用,以针对紫红色枯萎病。Biostimulans包括非致病性关键词:促进真菌的植物生长;镰刀菌;生物压力,生化防御。在气候变化的威胁和病原体的传播,提高农作物生产力并避免使用化学农药的情况下引入引入是农业行业的主要问题[1]。真菌疾病是许多国家对农作物造成严重损害的最危险的生物学压力之一[2]。最著名的真菌疾病病原体之一,镰刀菌,会对农作物,尤其是蔬菜作物产生负面影响[3-5]。然而,通过番茄生长的所有阶段,氧气孢子菌引起的真菌枯萎病[6,7]。番茄被认为是埃及最重要的作物之一,用于局部喂养和出口[8]。考虑到番茄作物的重要性,开发了提高对生物胁迫(例如真菌等生物压力)的新管理方法的发展,可能有助于增强安全且不含有害化学农药的全球粮食生产[9]。一致认为,可以通过外部喷洒生物和非生物刺激或诱导剂来激活植物感染的植物免疫。
摘要:在Panax Notoginseng的连续种植中,根际土壤中的致病真菌增加并感染了Panax Notoginseng的根,导致产量降低。这是一个紧迫的问题,需要解决,以有效克服与Panax Notoginseng的连续种植相关的障碍。先前的研究表明,枯草芽孢杆菌抑制了Panax Notoginseng根际中的致病真菌,但抑制作用不稳定。因此,我们希望引入生物炭,以帮助枯草芽孢杆菌在土壤中定植。在实验中,对Panax Notoginseng种植了5年的田地进行了翻新,并同时混合了生物炭。将应用的生物炭量设置为四个水平(B0,10 kg·Hm -2; b1; b1,80 kg·Hm -2; b2; b2,110 kg·hm -2; b3,140 kg·hm -hm -hm -2)和二级生物杆菌的生物学剂,将三个水平设置为三个水平(C1,10 kg)。 2; C3,25 kg·Hm -2)。使用了完整的组合实验和空白对照组(CK)。实验结果表明,整体蛋白酶在门水平下降低了0.86%〜65.68%。基本肌cota增长-73.81%〜138.47%,而Mortierellomy-Cota增加了-51.27%〜403.20%。在属水平上,Mortierella升高-10.29%〜855.44%,镰刀菌降低了35.02%〜86.79%,而Ilyonectria则增加了-93.60%〜680.62%。镰刀菌主要引起急性细菌枯萎的根腐,而伊利诺克里亚主要会导致黄色腐烂。good_coverage指数均高于0.99。在不同的治疗方法下,香农指数增加-6.77%〜62.18%,CHAO1指数增加了-12.07%〜95.77%,Simpson指数增加了-7.31%〜14.98%,ACE指数增加了-11.75%〜96.75%〜96.12%。随机森林分析的结果表明,Ilyonectria,pyrenochaeta和Xenopolyscytalum是土壤中最重要的三种最重要的物种,弯曲曲霉的值分别为2.70、2.50和2.45。fusarium排名第五,其弯曲的值为2.28。实验结果表明,B2C2治疗对镰刀菌具有最佳的抑制作用,并且在B2C2处理下,Panax Notoginseng Rothosphere土壤中镰刀菌的相对丰度降低了86.79%。 B1C2治疗对伊利诺克里亚的抑制作用最佳,而在B1C2处理下,Panax Notoginseng Rothizosphere土壤中伊甘元的相对丰度降低了93.60%。因此,如果我们想用急性摩尔斯托尼亚卵巢根腐烂改善土壤,则应使用B2C2处理来改善土壤环境;如果我们想通过黄色腐烂疾病改善土壤,我们应该使用B1C2处理来改善土壤环境。