使用标准陷阱和机会性调查的组合,我们记录了Nakauvadra范围内的六种侵入性哺乳动物。其中包括两种大鼠(Rattus exulans and R. rattus),一只猫鼬(疱疹fuscus),家用马(aquus caballus),山羊(Capra sp。)和家犬(Canis familisis)。尽管在非常低的密度下观察到了大多数这些物种,但在整个调查的地区发现了这些物种,包括相当僻静且难以到达山脊和茂密森林的地区。发现类似于H. fuscus的头骨大小的分解猫鼬是最有趣的发现,因为直到Nakauvadra调查之后,才确认其在斐济的发生(C. Morley Pers。Comm。,2009年2月),但是,其分布范围尚待验证。由于面积的大小和可及性,消除了大多数侵入性哺乳动物物种是不可行的。但是,有可能通过清除和/或将山羊排除在该地区来提高本地菌群的造林速率。在该地区开展的任何补救活动都需要在将森林作为其可持续生计的一部分的当地社区的同意和合作中进行。
摘要:我们对 2018-2019 年提交给康涅狄格州兽医诊断实验室 (CVMDL) 的蝙蝠中检测到的狂犬病毒 (RABV) 进行了全基因组测序和遗传表征。在提交给 CVMDL 的 88 只蝙蝠中,6 个脑样本(6.8%,95% 置信区间:1.6% 至 12.1%)经直接荧光抗体试验检测呈阳性。在棕蝠 (Eptesicus fuscus, n = 4)、灰毛蝠 (Lasiurus cinereus, n = 1) 和未知蝙蝠物种 (n = 1) 中检测到了 RABV。获得了六种检测到的 RABV 中的四种的完整编码序列。在系统发育分析中,大棕蝠的 RABV(18-62、18-4347 和 19-2274)属于蝙蝠 EF-E1 进化枝,与在宾夕法尼亚州和新泽西州从同种蝙蝠中检测到的 RABV 聚类。从迁徙灰毛蝠中检测到的蝙蝠 RABV(19-2898)属于蝙蝠 LC 进化枝,与在亚利桑那州、华盛顿州、爱达荷州和田纳西州从同种蝙蝠中检测到的 11 种病毒聚类。本研究中使用的方法产生了有关 RABV 变体遗传关系的新数据,包括它们的宿主和空间起源,这些数据将作为未来在北美研究 RABV 的参考数据。需要对蝙蝠 RABV 进行持续监测和基因组测序,以监测病毒的进化和传播,并评估可能与公共卫生相关的基因突变的出现。
近年来,可用于帮助现场植物识别的智能手机应用程序数量激增。可用的方法有很多,从基于人工智能 (AI) 和自动图像识别自动识别植物的应用程序,到需要用户使用传统二分法键或多访问键的应用程序,再到可能只有一系列图像而没有明确的系统来识别任何感兴趣的物种的应用程序。所有照片均由作者拍摄。在这里,我只关注那些可用于从上传的图像中自动识别植物的免费应用程序,最多只需要用户做出一些小决定(列于表 1 中)。我首先确认,无论是在现场使用实时图像,还是在计算机显示器上显示并通过智能手机拍摄该图像后对其进行测试,这些应用程序的行为都相似。然后,我在 38 张对比鲜明的英国野生和归化植物图像上测试了找到的 10 个免费自动植物识别 (id) 应用程序的性能(包括禾本科、莎草科、草本植物和木本植物,以及花、叶、果实或整株植物的图像),这些图像主要选自我自己的 visual-flora 网站 (visual-flora.org.uk)。样本包括许多常见物种、一些花园逃逸物种和几种不太常见甚至稀有的物种(例如 Cyperus fuscus)。每个应用程序对每张图像测试五次,因为许多应用程序即使使用完全相同的图像,也给出出人意料的差异化识别结果。所有测试均在 2019 年 10 月或 11 月进行,但许多应用程序都在不断改进。图 1 显示了测试的 38 张图像中的一些,其中一些被所有应用程序成功识别,也有一些仅被