沉积过程的一种非常特殊的情况是所谓的外延沉积,或者只是外延。该专业局部旨在将材料沉积到单晶模板上,生长为单晶层。半核心设备制造链中的第一步之一是在空白硅晶片上沉积外延硅。这是在外交过程中完成的。经常运行这些过程,一次仅处理一个晶圆(即单个晶圆处理)或少数数字(即多窃听或迷你批次)。
摘要 — 传统全球导航卫星系统 (GNSS) 的抗干扰能力可能正在接近实际性能上限。在传统 GNSS 轨道和频谱之外有可能获得更大的增益。低地球轨道 (LEO) 的 GNSS 长期以来被视为有前途但成本高昂,需要大型星座来实现快速导航解决方案。最近出现的商用宽带 LEO 巨型星座引发了人们对这些星座双重用途的研究,既可用于通信(其主要任务),又可用于次要的定位、导航和授时 (PNT) 服务。这些星座的运行波长比传统 GNSS 更短,可实现高度定向、相对紧凑的接收天线。不需要特定于 PNT 的在轨资源:托管宽带网络的发射器、天线、时钟和频谱足以满足 PNT 的需求。非合作使用 LEO 信号进行 PNT 是一种选择,但与星座运营商的合作(与其通信任务“融合”)减轻了从地面跟踪密集低空星座的负担,并使接收器能够产生单历元独立 PNT 解决方案。本文提出了这样一种合作概念,称为融合 LEO GNSS。可行性取决于机会成本,或次要 PNT 任务对通信星座运营商造成的负担。这是根据时间-空间-带宽乘积和能量预算来评估的。结果表明,近距离
热塑性融合细丝制造过程(FFF)的主要缺点之一是所产生的零件的可怜的chanical特性。这主要与细丝之间有限的合并有限的大孔相关。合并是由聚合物的粘度和表面张力统治的。因此,需要对这两种特性进行准确的表征,以建模和优化灯丝沉积和冷却过程中的合并。在这项工作中,呈现在大温度范围(25 - 380℃)上的表面张力表征程序,并将其应用于Polyetherketoneketone(PEKK)材料。此外,牛顿粘度的特征是风化的。然后,通过将现有的半分析模型与先前呈现的2D传热有限元仿真模型耦合来模拟聚结。结果显示了表面张力的温度依赖性实施的重要性。此外,PARA指标研究还对FFF过程有了工业理解。
面等离子体共振,促进了先进传感器的发展。[2,3] 在介电材料上制造的纳米孔阵列——更普遍地说是由亚波长直径的孔组成的规则有序结构——构成了集成二维光子晶体和全介电超表面架构的基础,能够以前所未有的水平限制和操纵光(包括幅度、光谱和空间管理)。[4] 这种等离子体和全介电纳米结构的纳米制造的通常技术方法依赖于各种工具和方法,其中包括聚焦离子束、电子束、光刻、反应离子蚀刻等。[5,6] 这些制造方法成熟且性能高,然而它们速度慢,需要针对所用每种材料进行优化的几个步骤和技术,从而不可避免地增加了整个过程的总成本和复杂性。未来的先进设备现在要求除了利用完美控制的平面纳米图案(在 X 和 Y 维度)之外,还需要利用第三维度(Z)。[7] 特别是,深度至少达到几微米的纳米孔阵列排列可以大大拓宽纳米光子结构的可能设计和功能范围。[7,8] 然而,在材料表面制造具有圆柱形轮廓的如此深的孔的技术具有挑战性。[9–12] 因此,引入一种多功能的制造方法,将孔深度添加为一个直接且独立的自由度,有望形成先进的架构。在此背景下,我们探索超快激光加工作为在参考介电材料熔融石英表面创建深气孔的直接方法。所谓“直接”,是指通过一步工艺制造一个孔,只用一次激光照射即可烧蚀物质,无需任何额外处理(例如化学蚀刻[13]),也无需平移目标材料。[14] 尽管超短脉冲直接激光烧蚀的最终空间分辨率尚未达到足够的性能标准,无法与传统纳米制造工艺相媲美,无法制造功能性纳米光子元件,但我们的目标是表明它代表了一种替代和互补的解决方案,在速度、无掩模和一步工艺、不需要真空环境或化学品方面具有吸引人的优势。此外,纳米结构可以在单个
热塑性塑料添加剂制造的最常见方法是融合沉积建模(FDM),这正在成为各种工程应用中的增长趋势,因为它很容易创建复杂的零件。适当的过程参数选择对3D打印零件的机械质量有重大影响。这项研究研究了四个关键过程变量对聚乳酸(PLA)样品拉伸强度的影响:填充密度,打印速度,构建方向和层厚度。使用FDM 3D打印机根据ASTM D638打印样品。这项研究的结果表明,PLA打印样品的拉伸强度受到层厚度,构建方向和填充密度等因素的高度影响。PLA打印样品的拉伸强度和Young的模量受到90°方向,空心填充,0.4 mm厚度和100 mm/s速度的显着影响。因此,随着FDM 3D打印机对于制造工程组件逐渐变得更加重要,因此找到可能导致更强机械和物理特性的参数值肯定会帮助设计师和制造商在全球。
摘要:准确的剂量学验证在放射疗法中变得越来越重要。al-尽管聚合物凝胶剂量测定法可能有助于验证复杂的3D剂量分布,但由于其对氧气和其他污染物的反应性强,因此对临床应用有局限性。因此,重要的是,凝胶储存容器的材料将与外部污染物的反应阻止反应。在这项研究中,我们测试了可以用作凝胶容器的各种基于聚合物的3D打印材料的化学渗透性。使用甲基丙烯酸,明胶和四甲基(羟甲基)氯化磷。比较了可应用于融合沉积建模(FDM)-Type 3D打印机的五种类型的印刷材料:丙烯酸酯丁烷丁二烯苯乙烯(ABS),cPE-POLYETER(CPE),聚碳酸酯(PC)(PC),多聚乳酸(PLA)和聚丙烯(PPPPPPPPPP)(PP)(PLA)(PLA)(pp)(plage vial)。分析了从磁共振成像扫描获得的每种材料的R2(1/T2)松弛率的地图。此外,评估了R2图的响应直方图和剂量校准曲线。R2分布表明,CPE比其他材料具有更高的边界,并且CPE的轮廓梯度也最接近参考小瓶。直方图和剂量校准表明,与参考小瓶相比,CPE提供了83.5%的最均匀和最高相对响应,均方根误差为8.6%。这些结果表明CPE是FDM型3D打印凝胶容器的合理材料。
全球至少有22亿人患有VI损害或失明[1]。盲人和视力障碍的人的数量仍在增加。盲文是盲人使用的通用触觉写作系统,其中三维,基于DOT的脚本允许阅读字符无光或视觉。与Clas Sical写作不同,单个字母字符是凸角,可以通过触摸指尖来阅读。Louis Braille(1809–1852)发明了带有他名字的写作系统,即盲文或盲文写作系统[2]。 可以通过用手指触摸[3]来“读取”此系统。 在盲文中,标志COM张贴了多达六个点,分为两列和三行,与适当的字母或其他字符相对应[4]。 通过在各个位置组合一个或多个点,可以设计64个组合,创建字母,数字,标点符号,Louis Braille(1809–1852)发明了带有他名字的写作系统,即盲文或盲文写作系统[2]。可以通过用手指触摸[3]来“读取”此系统。在盲文中,标志COM张贴了多达六个点,分为两列和三行,与适当的字母或其他字符相对应[4]。通过在各个位置组合一个或多个点,可以设计64个组合,创建字母,数字,标点符号,
摘要 在增材制造技术中,熔丝制造 (FFF) 对于高性能应用越来越重要,例如在生物医学和制药领域,这些领域要求产品符合严格的功能和几何规格。在最先进的技术中,正在积极研究过程监控以改进 FFF:在制造过程中监控机器和零件可以保持质量的持续控制,允许提前终止流程或在发现问题时采取纠正措施。本文介绍了正在进行的“智能” FFF 机器实施研究,其中传感和机器学习相结合以实现实时过程监控和自我调节能力。通过传感器,智能 FFF 机器可以监控挤出速率、温度和压力。机器视觉可用于监控当前层的几何形状和形貌,检测出现的形貌缺陷和零件形状错误。数字孪生(即正在制造的部件和 FFF 系统的计算机模拟)的存在发挥着重要作用,机器 AI 可将其用作决策过程的辅助手段,并通过传感器数据不断更新以反映当前的制造状态。通过这些数字孪生,可以突出开发智能 FFF 机器的当前机遇和挑战
本评论文章提供了利用非富勒烯受体(NFAS)的有机太阳能电池(OSC)的摘要,重点是二基吡咯吡咯(DPP),萘二酰亚胺(NDI)和二二酰亚胺 - 二酰亚胺(PDI)以及挑战。它强调了PDI,NDI和DPP的表征,尤其是它们的光学,结构和热性能。本文研究了取代基对NFA的分子和电子特性的影响,包括它们对光学,电,溶解性和分子间相互作用特性的影响。在提高NFA在有机半导体开关中的效率方面的进展,功率转换效率超过13%。还考虑了该领域进步的未来前景。该研究探讨了各种取代基对NDI衍生物(如五氟苯基,二苯基甲基甲基,2-硝基苯基,IPRP-NDI,DPM-NDI,dPM-NDI,NO2-NDI)等NDI衍生物的分子结构,光伏性能的影响。这些取代基会影响NDI衍生物的电导率,电子迁移率,氧化还原活性和聚集行为。评论强调了调整NFA中分子和电子特性的重要性,重点是PDI及其衍生物的核心结构。在各种位置(包括海湾和酰亚胺位点)的不同取代基会影响溶解度,聚集趋势,能级,电荷转移和分子堆积。基于DPP的NFA的光伏特性突出显示,达到了高达13%的功率转换效率。提供了详细说明各种DPP衍生物的表,展示了它们独特的吸收特性,PCE和电子迁移率。Hammett的研究被提及证明了电子撤回组对光伏效率的有利影响。本文还讨论了优化固态超分子相互作用中电荷转运和分子形状的重要性。BT与NFA的融合在减少带隙和增强分子内电荷转移方面的潜力进行了检查,从而改善了光伏性能。对这些衍生物的有条理研究被提倡以推进分子体系结构。