用于校准 NIST 的三端电容器。NIST 使用的标准电容器是两个参考标准(100 pF 熔融石英电介质商用电容器)和两个检查
国防部海军航空兵 FRC 东南海军学院杰克逊维尔佛罗里达州 Stratasys Fortus 400mc 熔融沉积成型 ABS、PC、Ultem、PPSF
4。Features.........................................................................................................................................................13 4.1.Alarms, warnings, and notifications............................................................................................ 13 4.2.Altitude diving..................................................................................................................................14 4.3.Ascent rate....................................................................................................................................... 15 4.4.Battery................................................................................................................................................16 4.5.Bookmark..........................................................................................................................................16 4.6.Ceiling broken................................................................................................................................. 16 4.6.1.Algorithm lock...................................................................................................................... 16 4.6.2.Warning: Ceiling broken .................................................................................................. 17 4.7.Clock...................................................................................................................................................18 4.8.Calibrating compass........................................................................................................... 18 4.8.2.Compass........................................................................................................................................... 18 4.8.1.设置偏差................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... 19 4.8.3。Locking the bearing........................................................................................................... 19 4.9.Customizing dive modes with Suunto app............................................................................. 20 4.10.Decompression algorithms....................................................................................................... 20 4.10.1.Suunto Fused™ RGBM 2 algorithm................................................................................ 21 4.10.2.Bühlmann 16 GF algorithm............................................................................................ 22 4.10.3.Diver safety........................................................................................................................24 4.10.4.Oxygen exposure.............................................................................................................24 4.11.Decompression dives.................................................................................................................. 25 4.11.1.Last stop depth................................................................................................................... 27 4.12.AIR/NITROX模式..................................................................................................................................................................................................................... 30 4.16.2。Deco profile................................................................................................................................... 28 4.13.设备信息................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... 29 4.14。Display.............................................................................................................................................29 4.15.Dive history....................................................................................................................................29 4.16.潜水模式..................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... 30 4.16.1。量规模式............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................. 31 4.17。Dive planner................................................................................................................................... 32 4.18.Flip display..................................................................................................................................... 32 4.19.Gas consumption..........................................................................................................................32 4.20.Gas mixtures.................................................................................................................................33
DLKA模块的特征映射。δ为GELU激活函数。每个分支的信息融合在空间维度中,并获得相应的权重。来自不同大卷积内核的特征
1.引言多光谱图像通常提供互补信息,如可见光波段图像和红外图像(近红外或长波红外)。有强有力的证据表明,融合的多光谱图像提高了解释的可靠性(Rogers & Wood,1990;Essock 等人,2001);而彩色多光谱图像则提高了观察者的表现和反应时间(Toet 等人,1997;Varga,1999;Waxman 等人,1996)。计算机可以自动分析灰度融合图像(用于目标识别);而彩色图像则易于人类用户解释(用于视觉分析)。想象一下,夜间导航任务可以由配备多传感器成像系统的飞机执行。分析组合或合成的多传感器数据将比同时监测多光谱图像(如可见光波段图像(例如,图像增强,ll)、近红外(NlR)图像和红外(lR)图像)更方便、更有效。在本章中,我们将讨论如何使用图像融合和夜视彩色化技术合成多传感器数据,以提高多传感器图像的有效性和实用性。预计这种图像合成方法的成功应用将提高遥感、夜间导航、目标检测和态势感知的性能。这种图像合成方法涉及两种主要技术,即图像融合和夜视彩色化,分别在下面进行回顾。图像融合通过整合互补数据来组合多源图像,以增强各个源图像中明显的信息,并提高解释的可靠性。这样可以得到更准确的数据(Keys et al.,1990)并提高实用性(Rogers & Wood,1990;Essock et al.,1999)。此外,据报道,融合数据提供了更为稳健的操作性能,例如增加了置信度、减少了歧义性、提高了可靠性和改进了分类(Rogers & Wood,1990;Essock et al.,2001)。图像融合的一般框架可以在参考文献(Pohl & Genderen,1998)中找到。在本章中,我们的讨论重点是像素级图像融合。对融合图像质量的定量评估对于客观比较各个融合算法非常重要,它可以测量有用信息的数量和融合图像中引入的伪影数量。
L3Harris 型号 H-101 AOM 是一种高速布鲁斯特窗口设备。它旨在支持脉冲拾取和模式锁定应用,这些应用需要比提供类似调制能力的单晶设备更高的光功率处理能力。来自相干光源的光聚焦到光学介质内的光束腰,该介质由低损耗、紫外线级熔融石英组成。当通过合适的射频 (RF) 源引入声脉冲时,光按比例引导到初级强衍射级。RF 输入信号通过单晶压电换能器转换为等效行进声脉冲,该换能器在高真空下合金粘合到熔融石英基板上。
问题虽然热塑性材料广泛应用于增材制造 (AM),并已显示出强度高、重量轻和生产成本相对较低等优势,但它们也具有某些缺点,例如熔化温度较低以及在长期应力负荷下容易拉伸和变弱。由于熔丝制造 (FFF) 和熔粒制造 (FGF) 等方法只能处理热塑性材料,因此迫切需要开发新的挤出方法来处理具有低热膨胀系数 (CTE) 的热固化热固性材料,以用于高强度和高温应用。即使是当今最先进的打印机产品也存在差距,禁止使用工业和军事相关应用中常见的高级热固性复合材料。
3DP – 三维打印 AM – 增材制造 MFMS – 多功能材料系统 VP – 气相沉积 DED – 直接能量沉积 SL – 立体光刻 BJ – 粘合剂喷射 MJ – 材料喷射 ME – 材料挤出 ME3DP - 材料挤出 三维打印 ISO – 国际标准组织 ASTM – 美国材料与试验协会 FFF – 熔融长丝制造 FDM – 熔融沉积成型 CAM – 计算机辅助制造 CAD – 计算机辅助设计 VFR – 体积流动速率 PLA – 聚乳酸 PBS – 聚丁二酸丁二醇酯 PHA – 聚羟基烷酸酯 SMP – 形状记忆聚合物 CNT – 碳纳米管 4DP – 四维打印
3DP – 三维打印 AM – 增材制造 MFMS – 多功能材料系统 VP – 气相沉积 DED – 直接能量沉积 SL – 立体光刻 BJ – 粘合剂喷射 MJ – 材料喷射 ME – 材料挤出 ME3DP - 材料挤出 三维打印 ISO – 国际标准组织 ASTM – 美国材料与试验协会 FFF – 熔融长丝制造 FDM – 熔融沉积成型 CAM – 计算机辅助制造 CAD – 计算机辅助设计 VFR – 体积流动速率 PLA – 聚乳酸 PBS – 聚丁二酸丁二醇酯 PHA – 聚羟基烷酸酯 SMP – 形状记忆聚合物 CNT – 碳纳米管 4DP – 四维打印
Prime editing 是一种基于 CRISPR 的“搜索和替换”技术,可在没有双链断裂 (DSB) 或供体 DNA 模板 1 的情况下,在哺乳动物细胞中介导靶向 32 插入、删除和所有可能的碱基对碱基转换。Prime editing 34 酶 (PE2) 由与工程逆转录酶 (RT) 融合的 SpCas9 切口酶组成。35 PE2 通过 Prime editing 向导 RNA (pegRNA) 被招募到目标位点,该 RNA 除了标准基因组靶向间隔区和 SpCas9 结合发夹结构外,还包含 3' 序列,37 该序列充当融合 RT 的模板,以在一条切口 DNA 链上合成编程的 DNA 序列。当细胞 DNA 修复机制修复断裂的链时,这种 RT-39 延伸片段会与未编辑的片段竞争,而编辑后的序列有时会取代基因组中的原始序列 1,2。41
