绝缘子是输电线路的重要设备,绝缘子覆冰会严重影响输电线路的稳定运行,因此绝缘子覆冰状态监测对电力系统的安全稳定运行具有重要意义。因此,本文提出了一种面向前端覆冰监测装置的轻量级绝缘子覆冰厚度智能识别方法。该方法融合残差网络(ResNet)与特征金字塔网络(FPN)构建多尺度特征提取网络框架,使浅层特征与深层特征融合,减少信息损失,提高目标检测精度。然后采用全卷积神经网络(FCN)对覆冰绝缘子进行分类与回归,实现覆冰厚度的高精度识别。最后,通过模型量化对所提方法进行压缩,减少模型的大小和参数,以适应计算资源有限的结冰监测终端,并在边缘智能芯片上验证了该方法的性能,并与其他经典方法进行了比较。
脑医学图像融合在构建当代图像以增强相互和重复信息以用于诊断目的方面起着重要作用。提出了一种对脑图像使用基于核的图像滤波的新方法。首先,使用双边滤波器生成源图像的高频分量。其次,估计第一幅图像的强度分量。第三,对几个滤波器采用侧窗滤波,包括引导滤波器、梯度引导滤波器和加权引导滤波器。从而最小化第一幅图像的强度分量与第二幅图像的低通滤波器之间的差异。最后,基于三个评估指标对融合结果进行评估,包括标准差(STD)、特征互信息(FMI)、平均梯度(AG)。基于该算法的融合图像包含更多信息、更多细节和更清晰的边缘,有助于更好地诊断。因此,我们基于融合图像的方法能够很好地找到目标体积的位置和状态,从而远离健康部位并确保患者的健康。
花生 ( Arachis hypogaea L.) 是豆科植物的异源四倍体,能够在热带和亚热带地区生长茂盛,被认为是一种很有前途的全球油籽作物。提高油酸含量已成为花生育种的主要目标之一,因为它具有降低血液胆固醇水平等健康益处、抗氧化特性以及延长保质期等工业效益。花生基因组测序已证明存在编码脂肪酸去饱和酶 2 ( FAD2 ) 的同源基因 AhFAD2A 和 AhFAD2B,它们负责催化单不饱和油酸转化为多不饱和亚油酸。研究表明,导致 FAD2 基因移码或终止密码子的突变会导致油中油酸含量升高。在本研究中,使用与不同脱氨酶融合的 Cas9 构建了两个表达载体 pDW3873 和 pDW3876,并测试了它们作为诱导花生 AhFAD2 基因启动子和编码序列点突变的工具。两种构建体都含有单核酸酶无效变体 nCas9 D10A,PmCDA1 胞嘧啶脱氨酶与该变体融合到 C 端(pDW3873),而 rAPOBEC1 脱氨酶和尿嘧啶糖基化酶抑制剂 (UGI) 分别融合到 N 端和 C 端(pDW3876)。将三个 gRNA 独立克隆到两个构建体中,并在 AhFAD2 基因的三个靶位点测试其功能和效率。两种构建体都显示出碱基编辑活性,其中在靶向编辑窗口中胞嘧啶被胸腺嘧啶或其他碱基取代。 pDW3873 的效率高于 pDW3876,表明前者是花生中更好的碱基编辑器。这是一个重要的进步,因为将现有突变基因渗入优良品种可能需要长达 15 年的时间,这使得该工具对花生育种者、农民、行业以及最终对消费者都大有裨益。
1. 简介和文献综述 金属增材制造 (MAM) 是一种 3D 打印技术,对各个行业(例如航空航天、生物医学、能源)影响最为显著 (Armstrong 等人,2022 年)。根据 ASTM/ISO 52900:2021(ISO ASTM 标准 2021),MAM 分为以下类别:材料挤出 (MEX)、材料喷射 (MJ)、粘合剂喷射 (BJ)、粉末床熔合 (PBF)、定向能量沉积 (DED)、板材层压 (SL) 和瓮聚合 (VPP)。PBF 是最广泛的工艺技术,因为它成熟且精度高 (Mandolini 等人,2022 年),覆盖了 85% 的 MAM 市场 (AMPOWER GmbH & Co 2020 年)。另一方面,PBF 机器复杂且价格昂贵。最近,金属 MEX(M-MEX)因其以下优点而备受关注:成本低(例如台式系统)、设备简单(用户友好性)、潜在危害少(例如没有金属粉末损失)、电源有限(与 PBF 或 DED 相比)和环境可持续性增强(Suwanpreecha 和 Manonukul 2022;Bianchi 等人 2022)。另一方面,M-MEX 的主要缺点涉及线材(例如粘合剂类型的选择)及其生产工艺(例如合适的混合程序)。要求保证线材的高质量,以保证 3D 打印部件的最终形状、尺寸、尺寸和属性(Suwanpreecha 和 Manonukul 2022)。 M-MEX 也称为 mFFF(金属熔丝制造,(Bankapalli 等人,2023 年))、FDMet(金属熔融沉积,(Bankapalli 等人,2023 年))、金属 FDM(Ramazani 和 Kami,2022 年)、MF3(金属熔丝制造,(Singh 等人,2020 年)),其灵感来自 MIM(金属注射成型)和 FFF(熔丝制造)(Bankapalli 等人,2023 年)。这项技术的快速增长得益于 FFF 和 MIM 的大量投资。事实上,除了绿色部件的制造方法外,材料 MEX 与 MIM 相似(就整个过程而言)。M-MEX 可以制造出性能接近(或相同)于 MIM 的零件。就设计自由度而言,金属 MEX 更具吸引力,因为它不需要模具。 M-MEX 原料由金属粉末和聚合物粘合剂组成(图 1)。通过将原料挤压到构建平台上来创建 3D 对象(绿色部分)。需要脱脂以去除部分聚合物材料。烧结是最后一个过程,通过以下方式完全致密化部件
ODF_01 Pushing the Limits of Deflectometry: Achieving Interferometric Accuracy in Large Optics Testing Oral Presentation ODF_03 Performance Evaluation of Astronomical Images Using Noise Characterization Oral Presentation ODF_04 Optical Design of Telecentric Eyepiece for Optically Fused Imagers Oral Presentation ODF_10 Miniaturized Wide Field of View MWIR Optics for Missile Coordinate Determination Oral Presentation ODF_12基于光的实验方法,以估计1D亚波长度聚合物相位栅格的大凹槽深度口腔呈递ODF_24 ODF_24关于VNIR镜头组装性能的比较研究,并具有球形和非球形设计口腔设计HOL_02衍射通用型态度差异差异差异差异 - 数字重建算法用于数字在线全息口腔呈现HOL_09 HOL_09具有高阶复合涡流的光场生成口服呈现HOL_12 HOL_12平行相移数数字全息图和图像处理,用于语音安全性hol_16使用GS Algority holgor_99 Vortex Fresnel镜头相掩码和线性典型转换口服口头呈递
FUSED 可持续能源发展融资公用事业 GFI 政府金融机构 GOP 菲律宾政府 IFC 国际金融公司 JV 合资企业 kW 千瓦 kWh 千瓦时 LCOE 平准化能源成本 LGU 地方政府单位 LTA 贷款技术顾问 MOE 日本环境部 MW 兆瓦 MWh 兆瓦时 NEA 国家电气化管理局 NGO 非政府组织 NPC-SPUG 国家电力公司 - 小型电力公用事业集团 NPP 新电力供应商 ODA 海外发展援助 OPEX 运营费用 PSA 电力供应协议 PSALM 电力行业资产负债管理公司 QTP 合格第三方 RE 可再生能源 REDCI 可再生能源开发商现金奖励 ROMELCO 朗布隆电力合作社 ROO 修复-拥有-运营 ROT 修复-运营-转让 RPS 可再生能源组合标准 SAGR 补贴核准发电率 SARR 补贴核准零售价 SBLC 备用信用证 TCGR 真实成本发电率 TWh 太瓦时 UCME 传教士电气化普遍收费 WB 世界银行 汇率 1 美元 = 50 菲律宾比索
今天的摘要,诸如使用免疫毒素的靶向疗法增加了靶向特定抗原或受体在肿瘤细胞表面上。成纤维细胞生长因子诱导14(FN14)是一种细胞因子受体,涉及几种细胞间信号通路,并且可以在癌细胞表面高度表达。由于furin蛋白酶在一步中出现了假单胞菌毒素A(PE)的酶结构域的裂解,因此我们将类似志贺毒素的2a(STX2A)的酶亚基与结构域II和PE的一部分PE融合在一起,以增加STX的毒性。然后,我们将抗FN14单克隆抗体(P4A8)的FV片段融合到STX2A-PE15,并评估了STX2A-PE15-P4A8嵌合蛋白作为新的免疫毒素候选者。在计算机分析中表明,STX2A-PE15-P4A8是一种稳定的嵌合蛋白,对FN14受体具有高亲和力。尽管,STX2A-PE15-P4A8可以与B细胞受体结合,但由主要的组织相容性复合物II(MHC-II)薄弱地提出。因此,它可能具有一些免疫原性。根据我们的内部研究,我们预测STX2A-PE15-P4A8可以是癌症免疫疗法的良好候选者。
2。Hamat,S.,Ishak,M.R。,Salit,M.S.,Yidris,N.,Showkat Ali,S.A.,Hussin,M.S.,Abdul Manan,M.S. 自聚合聚氨酯涂层对融合沉积建模(FDM)(2023)聚合物的聚合酸(PLA)机械性能(PLA)的机械性能的影响。 否。 2525Hamat,S.,Ishak,M.R。,Salit,M.S.,Yidris,N.,Showkat Ali,S.A.,Hussin,M.S.,Abdul Manan,M.S.自聚合聚氨酯涂层对融合沉积建模(FDM)(2023)聚合物的聚合酸(PLA)机械性能(PLA)的机械性能的影响。否。2525
在干燥的环境中为电池充电,以防止短路损坏。即使不使用自行车,每3个月至少每3个月为电池充电一次,至少达到60%的容量。不要覆盖电池或充电器。不要始终将电池连接到电力。请勿将电池用于其他电器。它是专门针对此模型的。不要拆卸或修改电池箱。不要火或暴露于极端温度。将电池从零到100%充电的时间为1-5小时。驱动器的保修:保修涵盖了不容易受到粗糙处理的驱动器部分(包装,电子,充电器等)。),这些部分由24个月的保修覆盖。保修不涵盖电池的化学部分和正常使用引起的容量降低(两年后39%),这些部分由12个月的保修覆盖。充电:电池是电动自行车中最昂贵的部分,因此在处理,充电和存储时要额外注意。电池对准确的充电很敏感,因此对于锂离子电池,必须仅使用我们提供的充电器。将充电器插入220240 V主电源中,一个5 A Fused电路就足够了。当所有单元都达到满容量时,充电器本身将停止充电。
• 材料挤出(熔融沉积成型):目前最常见、最知名的 3D 打印技术。热塑性长丝,如 ABS(丙烯腈丁二烯苯乙烯)或 PLA(聚乳酸),被熔化并通过移动喷嘴分层沉积。 • 大桶聚合:最常用的方法是立体光刻 (SLA)。紫外激光作用于液态光聚合物树脂,使树脂逐层硬化。 • 材料喷射:将微小的进料液滴选择性地沉积到构建平台上。当液滴冷却并凝固时,下一层沉积在上面。 • 薄片层压:使用激光或刀片逐层切割和粘合薄层材料(例如,织物、铝箔),从而形成物体。 • 粘合剂喷射:将液态粘合剂喷洒到陶瓷或金属粉末床上,使其凝固。重复该过程逐层构建物体。 • 粉末床熔合:选择性激光烧结 (SLS) 是该技术最常见的形式。塑料、金属、陶瓷或玻璃粉末使用激光熔合在一起形成固体物体。• 定向能量沉积:金属粉末或金属丝在熔化的同时由移动的打印头沉积。
