Guardant360®是一种基于定性的下一代测序测试,它使用靶向高吞吐杂交捕获技术检测74个基因中的单核苷酸变体(SNV),插入和删除(Indels),拷贝数扩增(CNAS)中的18(18)Genes in 6(18)Genes in六(6)(6)(6)(6)。Guardant360利用无细胞的DNA(CFDNA)从无细胞DNA血液收集管(BCT)中收集的外周全血的血浆中。Guardant360提供了基因组结果,包括使用常规的血液抽血在实验室的样品收据中7天内在7天内进行基因组结果,从而消除了仅依靠组织测试的需求。Guardant360为晚期固体癌症患者提供明智的治疗决策,并在一线治疗或进展前确定患者的治疗选择或临床试验。
摘要:有效的,有效的,RET选择性的酪氨酸激酶抑制剂(TKIS)pralsetinib和selpercatinib对RET V804L/M Gatekeeper突变体有效,但是,在Solvent RET G810残基上引起抗性的Ret ret ret ret the Spece的适应性突变,可引起Solvent RET G810残基的抗性。在EGFR和ALK驱动的NSCLC中也可以看到,KRAS和MET的同时存在放大的增长可能代表了直接抑制的其他逃避机制。在这篇综述中,我们总结了有关RET融合的实际知识,重点关注NSCLC的融合,这是批准的RET抑制药物的主要临床试验结果,并特别关注了选择性TKI的最新成果,并在经验预期的临床前关于抵抗力机制和有关假设和可行药物的抗药性机制和建议的临时证据和建议的策略和策略均不相同。
在8148名患者中,在22例患者中鉴定出NRG1融合(0.27%)。患者的平均年龄为59岁(范围为32至78岁),男女比率为1:1.2。肺是最常观察到的主要部位(n = 13),被胰腺片型(n = 3)降低,胃肠道(n = 2,胃和直肠每个),卵巢(n = 2),乳房(n = 1),乳房(n = 1)和软组织(n = 1)。在组织学上,所有肿瘤均表现出腺癌组织学,除了一例肉瘤。CD74(n = 8)和SLC3A2(n = 4)是最常见的融合伙伴。主要的特征包括少于三个同时发生的遗传改变,低肿瘤突变负担和低编程的死亡配体1表达。在NRG1融合患者中观察到各种临床反应。
重组蛋白在治疗几种疾病中作为药物发挥了重要作用。这些蛋白质主要分为天然类似物和蛋白质融合[1-4]。人类胰岛素(Humulin R)[3,5]和Etanercept(Enbrel)[6,7]在1982年和1998年被两组(类似物和融合)批准为1982年和1998年的生物药物剂(FDA)。输注蛋白,一个结构域提供特定的生物学活性,例如酶活性(例如,凝结因子),靶向激活或失活(例如,受体的配体)和毒性(例如,二胚蛋白毒素)。以及其他领域传达了更通用的功能,例如延长半衰期,提高效率,降低免疫原性[8-11],提高溶解度,折叠,稳定性和/或热稳定性以及提供新的靶向和递送途径[12-14]。
胆管癌 (CCA) 是一组罕见且侵袭性的肝胆道恶性肿瘤,包括肝外胆管癌 (eCCA) 和肝内胆管癌 (iCCA),前者进一步细分为远端胆管癌 (dCCA) 和肝门部胆管癌 (pCCA) [ 1 , 2 ]。值得注意的是,这些亚组不仅来自胆道系统的不同解剖位置,而且在预后、病因、生物学和流行病学方面也存在显著差异 [ 3 , 4 ]。在过去十年中,下一代测序技术的出现为识别 CCA 的重要分子特征铺平了道路,大量报告观察到特定 CCA 亚型独有的基因畸变 [ 5 , 6 ]。这些发现导致了多种分子靶向疗法的开发,大约 50% 的 CCA 患者携带潜在可用药物治疗的异常 [ 7 , 8 ]。事实上,已经描述了许多潜在的治疗靶点,包括成纤维细胞生长因子受体 (FGFR) 融合、异柠檬酸脱氢酶 (IDH)-1 突变、BRAF 突变和神经营养酪氨酸激酶 (NTRK) 基因融合 [ 9 – 12 ]。关于 FGFR 靶向药物,FGFR1、FGFR2 和 FGFR3 抑制剂 pemigatinib 于 2020 年 4 月获得美国食品药品监督管理局 (FDA) 批准,用于治疗携带 FGFR2 融合或重排的既往接受过治疗的 CCA 患者 [ 13 – 15 ]。此次批准基于 II 期 FIGHT-202 临床试验的结果。该试验显示,pemigatinib 的总体反应率 (ORR) 为 35%,中位总生存期 (OS) 为 21.1 个月,中位随访期为 17.8 个月 [ 16 ]。此外,其他几种 FGFR 抑制剂正在接受评估,目前在 CCA 患者中处于不同的开发阶段,包括 derazantinib、infigratinib 和 futibatinib,其中后者最近在 FOENIX-CCA2 临床试验中显示 ORR 为 37.3%,中位反应持续时间为 8.3 个月 [ 17 – 19 ]。同样,IDH 抑制剂也在 CCA 中进行研究,大约 13–15% 的 iCCA 患者会出现 IDH-1 突变 [ 20 ]。最近发表的 ClarIDHy III 期试验比较了 IDH-1 抑制剂 ivosidenib 与安慰剂在已接受过两线全身治疗的 IDH-1 突变型 CCA 中的疗效 [ 21 ]。值得注意的是,与安慰剂组相比,ivosidenib 组的无进展生存期 (PFS) 有所改善,中位 PFS 分别为 2.7 个月和 1.4 个月(风险比 (HR) 0.37;95% 置信区间 (CI) 0.25–0.54;单侧 p < 0.0001),并且 OS 呈优先趋势。此外,其他几种分子靶向治疗最近也报告了有趣的结果,II 期 ROAR 试验的结果就证明了这一点,该试验评估了达拉非尼联合曲美替尼治疗 BRAF V600E 突变型 CCA 患者的效果 [ 22, 23 ];而且,大量 I 期至 III 期临床试验正在评估新型靶向疗法,作为单一疗法或与其他抗癌药物联合使用,并可能在未来几年进一步改变 CCA 的治疗前景 [ 24 , 25 ]。然而,仍有一些重要问题有待解决。首先,靶向治疗的疗效在很大程度上受到获得性耐药性的限制,而继发性多克隆突变在这种情况下是一个显著的挑战 [ 26 , 27 ]。因此,
Cholangiocarcinoma (CCA) includes a group of rare and aggressive hepatobiliary malignancies, including extrahepatic cholangiocarcinoma (eCCA) and intrahepatic cholan- giocarcinoma (iCCA), with the former further subdivided into distal (dCCA) and perihilar cholangiocarcinoma (pCCA) [ 1 , 2 ].值得注意的是,这些亚组不仅来自胆道树的不同解剖位置,而且在预后,病因学,生物学和流行病学方面存在显着差异[3,4]。在过去的十年中,下一代测序的出现为识别CCA重要分子特征的鉴定铺平了道路,其中大量报告观察到特定CCA亚型独有的遗传畸变[5,6]。这些发现导致在这种情况下发展了几种分子靶向疗法,大约50%的CCA患者具有潜在的可毒物质[7,8]。实际上,已经描述了许多潜在的治疗靶标,包括纤维细胞生长因子受体(FGFR)融合,等异急塞脱氢酶(IDH)-1的突变,BRAF突变和神经营养性酪氨酸激酶(NTRK)基因融合[9-12]。针对FGFR靶向药物,FGFR1,FGFR2和FGFR3抑制剂Pemigatinib于2020年4月获得食品和药物管理局(FDA)批准,用于先前治疗的携带FGFR2融合或重排的CCA患者[13-15]。批准是基于II期Fight-202临床试验的结果,在该试验中,Pemigatinib报告的总回应率(ORR)为35%,中位数为17.8个月后,总体生存率(OS)为21.1个月[16]。此外,还评估了其他几种FGFR抑制剂,目前在CCA患者中处于不同的发育阶段,包括derazantinib,infratinib和Futibatinib,最近的ORR为37.3%,ORR为37.3%,而Foenix-CCA2临床试验中的反应持续时间为8.3个月。同样,在CCA中研究了IDH抑制剂,在大约13-15%的ICCA患者中,IDH-1突变发生了术[20]。最近发表的Claridhy III期试验比较了IDH-1抑制剂Ivosidenib与IDH-1突变体CCA中的安慰剂,后者接受了多达两条系统治疗[21]。值得注意的是,与安慰剂组相比,ivosidenib的臂显示出无进展的生存率(PFS),中位PFS分别为2.7个月和1.4个月(危险比(HR)0.37; 95%施加性间隔(CI)0.25-0.54; One-One-One-side P <0.000101 and As ans As As As As A.As Asa and A.As As As A.As A.As As As Asaf。此外,通过评估dabrafenib plus trametinib对BRAF V600E-Mutated-Muthated CCA的患者的相结合的发现,最近报告了其他几种分子靶向治疗,最近报道了造成的结果。此外,III期临床试验的数量令人印象深刻,正在评估新颖的焦油疗法,作为单一疗法或与其他抗癌药物结合使用,并可能在明年几年进一步改变CCA的治疗景观[24,25]。但是,重要的问题仍有待解决。因此,首先,靶向治疗的效率受到获得的抗药性发作的限制,其次级多克隆突变在这种情况下代表了一个显着的挑战[26,27]。
摘要。您只看一次(YOLO)的对象探测器显示出显着的自动脑肿瘤检测精度。在本文中,我们通过结合双级路由关注,广义特征金字塔网络和第四个检测到Yolov8的探测来开发一种新型的BGF-Yolo架构。bgf-yolo包含一种注意机制,可以通过将高级半智能特征与空间细节合并,以更多地关注重要特征,并具有金字塔网络来丰富特征表示。此外,我们研究了不同注意力机制和特征融合的影响,检测脑肿瘤检测准确性的检测头构造。实验结果表明,与Yolov8x相比,BGF-Yolo的MAP 50绝对增加4.7%,并且在脑肿瘤检测数据集BR35H上实现了最先进的地图。该代码可在https://github.com/mkang315/ bgf-yolo上找到。
库制备基于经过验证的杂交捕获化学,可从基于DNA和RNA的库中纯化选定的靶标。生物素化的探针与感兴趣的区域杂交,这些区域使用链霉亲和素涂层的磁珠将其拉下,然后洗脱以丰富库池。基于杂交的富集是一种有用的策略,用于分析给定样品中的特定遗传变异,并可靠地测序外部或大量基因(例如,> 50个基因)。它在广泛的输入类型和数量上提供可靠的结果。混合捕获化学具有比扩增子测序的几个优点,包括产生较少的伪影和辍学的数据。此外,杂交捕获化学是融合不可知的,可以检测和表征已知和新型融合。与基于扩增子的方法不同,该方法需要确认性测试,因为可能会出现假阳性,而混合捕获方法高度敏感,并且可以准确地表征已知和新型伴侣的基因融合。
结果 TP53 和 DNMT3A 突变是最常见的突变。在我们队列中检测到了在 HGESS( ZC3H7B- BCOR 和 NUTM2B-YWHAE )和 LGESS( JAZF1-SUZ12 )中常见的经典融合。CCND1 在 HGESS 中显著上调,而编码雌激素受体 (ER) 和孕激素受体 (PR) 的 GPER1 和 PGR 的表达在 HGESS 和 LGESS 之间没有显著差异。60% 的 HGESS 患者检测到了富集同源重组修复、细胞周期和磷酸肌醇 3-激酶/AKT/哺乳动物雷帕霉素靶蛋白途径的可操作突变。HGESS 中上调表达的基因在 5 个免疫相关途径中显著富集。大多数 HGESS 患者(85.7%)具有免疫治疗疗效的阳性预测因子。免疫微环境分析显示HGESS具有较高的免疫浸润程度,其中ZC3H7B-BCOR融合的HGESS患者免疫浸润程度相对高于NUTM2B-YWHAE融合的患者。
靶向致病蛋白的治疗方式是多种疾病适应症的金标准。不幸的是,这些蛋白质中的很大一部分被标准的基于小分子的方法“不可能”,这在很大程度上是由于它们的无序性质和不稳定性。将功能性肽设计为不可用的靶标,无论是独立的粘合剂还是效应域的融合,因此为治疗干预提供了独特的机会。在这项工作中,我们将最新模型适应对比的语言图像预训练(剪辑),以设计一个统一的,基于序列的框架来设计目标特异性肽。此外,通过利用已知的实验结合蛋白作为支架,我们创建了一个流线型的推断管道,称为切割和夹子,有效地选择了肽进行下游筛选。最后,我们在实验中融合了候选肽与E3泛素连接酶结构域,并在人类细胞中证明了致病蛋白靶标的稳健细胞内降解,从而激发了我们技术的进一步发展,以促进未来的临床翻译。