克利亚交换是对细菌菌株遗传操纵的最通用手段。通过这种方法,可以用选择性修饰的DNA序列代替细菌染色体或偶发组中的DNA段。因此,基因缺失,插入,基因融合,单基对更改等。可以在完全本地的情况下引入细菌基因组。为了简化这种经常使用的方法,FDA研究人员开发了一种改进,更快的技术,以将定义的遗传改变引入Bordetella物种的基因组,例如Bordetella tuspussis,Bordetella Parapertussis和Bordetella bronchiseptica。此方法使用综合载体的单个位点染色体DNA裂解来催化载体消除,从而导致等位基因替代。它可以用作研究特定基因在毒力中的重要性并创建具有理想特性(例如突变细菌毒素)的菌株的重要性(例如,百日咳毒素)不再具有毒性活性,而是完全免疫原性,或增加了疫苗成分的合成。
成纤维细胞生长因子(FGF)受体3(FGFR3)是跨膜受体高度保守的FGFR家族的成员。9-11有四个FGF受体FGFR1-4,每个FGFR1-4由细胞外配体结合结构域,跨膜结构域和一个细胞内酪氨酸激酶结构域组成。10,11受体二聚化在细胞外结构域与FGF配体系列的高亲和力成员结合后,导致细胞内结构域和磷脂酶Cγ,PI3K-AKT,RAS-MAPK-ERK,RAS-MAPK-ERK和STAT PARHWOWEN PATHERACH ENTERATION,在几种过程中扮演重要角色和发展的角色,导致磷酸化。9,11,12 FGFR3畸变作用在肿瘤类型的肿瘤中起作用,已在15%至20%的晚期尿路上皮膀胱癌中被鉴定出来,约15%的子宫癌(子宫癌)在其他固体肿瘤恶性肿瘤中的子宫内膜癌的约5%,较少的频率(<5%)。10,11,13,14激活的FGFR3改变是多种多样的,包括点突变,融合,扩增和过表达。9-12 FGFR3的失调促进了肿瘤生成和肿瘤细胞的增殖,迁移和存活。9-12,15
简单总结:肿瘤治疗已经并将继续演变为一种不可知论的方法,即治疗更多地侧重于识别和靶向基因异常,而不是像几十年前那样侧重于癌症的来源器官。随着每种基因异常都被确定为靶点,针对这些基因的药物开发也随之增长,从而提高了生存率和生活质量,人们对寻找新靶点的兴趣也随之增加。肺癌是最好的例子之一,与接受经验性常规化疗的患者相比,可靶向的基因异常导致生存率存在显著差异。神经调节蛋白 1 基因 (NRG1) 的易位是众多具有临床意义的基因融合之一,它有可能成为可靶向的基因,欧洲和美国已经在进行临床试验。本综述旨在描述这种新融合在肺癌治疗中的重要性和最新进展。
测序运行,从收到样本到报告的周转时间不到 7 天。结果表明,可扩展的检测方法可以准确且可重复地检测出 40ng DNA 中的小变异、拷贝数变异、微卫星不稳定性 (MSI) 和肿瘤突变负担 (TMB),以及 20ng RNA 中的多个基因融合,包括已知和未知的伴侣和剪接变体。对 717 个肿瘤样本和参考材料进行了测序,其中 96 个癌症相关基因存在已知变异,以评估检测性能。所有变异类别均能以一致且可报告的变异等位基因百分比可靠地检测到,总体准确度和精确度 > 99%。我们的结果表明,高通量 CGP 检测是一种准确的分子变异检测方法,支持肿瘤学的精准治疗。支持系统和可扩展的工作流程可以每周高效解释和及时报告数百个患者癌症基因组,并具有出色的分析性能。
最初的PMA(P160045)ONCOMINE™DX靶标(ODXT)测试于2017年6月22日批准,用于检测可能从FDA批准的三种非小细胞肺癌(NSCLC)中受益的患者的遗传改变。随后,批准了其他PMA补充剂,用于扩展使用ODXT测试的指示,以检测NSCLC患者的肿瘤中的RET融合,以证明第四次治疗指示和鉴定IDH1单核苷酸变体(SNVS)以来的胆管癌(CC)患者是其原始批准的患者。支持先前批准的指示的SSED可以在CDRH网站上找到。当前的面板轨补充剂被提交以扩展使用ODXT测试的适应症,以包括鉴定表皮生长因子受体(EGFR)Exon 20插入的NSCLC患者的伴随诊断指示,这些NSCLC患者可能会受益于目标药物治疗,EXKITION™(Mobocertinib)。II。 使用的指示II。使用的指示
通过单独的测试进行逐个基因分析非常繁琐,而且当每个基因都作为单独的项目报告和定价时,成本会变得很高。新的标准即将成为“综合基因组分析”(CGP)。有几个因素推动了这一发展。首先,对于单一癌症,有越来越多的靶向疗法,每种疗法都与不同的基因或基因组特征配对。所有这些标签上的基因都可以纳入 CGP 面板中。其次,一些新的重要基因的患病率非常低(包括 ALK、ROS1 和 NTRK1,2,3),因此在 CGP 之外一次测试一个基因是不切实际的。第三,肿瘤突变有很多种,其中一些不容易通过旧的测序方法检测到。 CGP 测试使用下一代测序,在一次检测中评估一系列不同的突变,包括点突变、小和大的插入-缺失、重排或致癌基因融合、以及大拷贝数重复和丢失(Boyle 等人,2021 年)。
这项研究中总共包括38例患者:27例非小细胞肺癌,10例结直肠癌和1例患有阑尾癌。在17例患者(占队列的45%)中检测到了对Adagrasib的抗性的假定机制,其中7例(共18%的队列)具有多种复合机制。获得的KRAS改变包括G12D/R/V/W,G13D,Q61H,R68S,H95D/Q/R,Y96C和KRAS G12C等位基因的高级扩增。获得的抗性旁路机制包括MET放大;在NRA,BRAF,MAP2K1和RET中激活突变;涉及ALK,RET,BRAF,RAF1和FGFR3的致癌融合; NF1和PTEN中的功能丧失突变。在九名肺腺癌患者中有两名可用,可提供成对的组织生物 - 生物膜样品,在没有任何其他耐药机制的情况下观察到组织学转化向鳞状细胞癌。使用体外深突变扫描屏幕,我们系统地定义了赋予KRAS G12C抑制剂抗性的KRAS突变的景观。
虽然非常罕见,但如果您的癌症具有微卫星不稳定性高 (MSI-H) 或错配修复缺陷 (dMMR) 特征,或肿瘤突变负担高 (TMB-H),并且如果您在之前的治疗中取得了进展并且没有令人满意的治疗选择,那么 PD-1 抑制剂 Keytruda (Pembrolizumab) 是 FDA 批准的选择。如果您的癌症具有神经营养受体酪氨酸激酶 (NTRK) 基因融合而没有已知的获得性耐药突变,并且如果您在之前的治疗中取得了进展并且没有令人满意的治疗选择,那么 Vitrakvi (Larotrectinib) 和 Rozlytrek (Entrectinib)(口服酪氨酸激酶抑制剂,可在许多细胞功能中充当“开启”或“关闭”开关)是 FDA 批准的选择。NTRK 融合极为罕见,仅发生在约 0.5-1% 的常见癌症中。 *以上激素治疗方案适用于未出现“内脏危机”(严重器官功能障碍和疾病快速进展)的患者。对于出现内脏危机的患者,可立即使用化疗来控制病情,之后内分泌治疗可能是一种可行的选择。
可编程的 CRISPR/Cas9 DNA 核酸酶是一种多功能的基因组编辑工具,但它需要宿主细胞 DNA 修复机制来改变基因组序列。这一事实导致切割位点的基因组发生不可预测的变化。因此,人们迫切需要能够改变基因组而不会导致 DNA 双链断裂的基因组编辑工具。在这里,我们表明,启动子相关短向导 (sg) RNA 与融合到 Krüppel 相关框域 (KRABd) 的死 Cas9 (dCas9) 以及甲基 CpG 结合蛋白 2 (MeCP2) 的转录抑制域的表达可导致小鼠胚胎干细胞和人类胚胎肾 (HEK) 293 细胞中的持续基因沉默。令人惊讶的是,这种效果在 DNA(胞嘧啶-5)-甲基转移酶 3A 和 3B(Dnmt3A 2 / 2 、Dnmt3b 2 / 2 )耗尽的细胞中是可以实现的,甚至会增强。我们的结果表明,dCas9-KRABd-MeCP2 融合可用于长期表观遗传基因沉默,可用于细胞生物学,并可能用于治疗环境。
一项研究暗示了自噬1(AMBRA1)的蛋白质过表达(AMBRA1),这是自噬的关键调节剂,促进了胆管癌的细胞浸润和预后不良(15)。与此同时,一种变性淋巴瘤激酶(ALK)是一种调节正常细胞发育中涉及的信号传导途径的酪氨酸激酶受体,是固体肿瘤中常见的肿瘤基因之一,包括非小细胞肺癌(NSCLC)和神经细胞母细胞瘤(16-19)。crizotinib是一种特异性结合与碱酪氨酸激酶结构域的抑制剂,可导致抑制下游信号通路(20)。crizotinib已被批准为ALK -ADACDACDER NSCLC的标准一线治疗。尽管已经报道了胆道癌的ALK过表达,但ALK融合,特别是AMBRA1- ALK仍未报告。此外,关于克唑替尼在GBC携带ALK重排或过表达的GBC有效性的报告仍然有限。在这里,通过使用NGS,我们发现了对Crizotinib具有出色治疗反应的GBC患者的新型AMBRA1- ALK融合。