塑料在被丢弃后需要更长的时间才能分解或降解,对生态和环境污染造成威胁。由于最近的响应和全球关注,人们正在尝试减少、再利用和回收使用的塑料。尽管这些努力似乎对一小部分废弃塑料取得了成功,但剩余的废物要么进入垃圾填埋场,要么通过多种途径进入水生态系统(Lange 2021)。微塑料和纳米塑料的形成源于较大的塑料碎片通过各种物理、化学和生物过程的分解。塑料可以通过多种机制分解或降解,包括生物(由生物体活动引起)、非生物(由非生物过程引起)、光降解(由暴露于光引起)、热(由热引起)和机械
乳腺癌仍然是全球女性癌症相关死亡的主要原因,凸显了对新治疗策略的需求。滋养层细胞表面抗原 2 (Trop-2) 是一种 I 型跨膜糖蛋白,在包括所有乳腺癌亚型在内的各种实体瘤中高度表达,已成为癌症治疗的一个有希望的靶点。本综述重点介绍用于治疗乳腺癌的 Trop-2 靶向抗体-药物偶联物 (ADC) 的最新进展。我们全面分析了 ADC 的结构和作用机制,以及 Trop-2 在乳腺癌进展和预后中的作用。几种 Trop-2 靶向 ADC,如 Sacituzumab Govitecan (SG) 和 Datopotamab Deruxtecan (Dato-DXd),在三阴性乳腺癌 (TNBC) 和激素受体阳性/HER2 阴性 (HR+/HER2-) 乳腺癌的临床试验中均表现出显着的抗肿瘤活性。我们系统地回顾了这些 ADC 正在进行的临床研究,重点介绍了它们的疗效和安全性。此外,我们还探索了将 Trop-2 靶向 ADC 与其他治疗方式(包括免疫疗法、靶向疗法和小分子抑制剂)相结合的潜力。值得注意的是,Trop-2 靶向 ADC 已显示出通过多种信号通路重新编程肿瘤微环境的前景,有可能增强抗肿瘤免疫力。本综述旨在为创新乳腺癌疗法的开发提供新的见解和研究方向,为改善乳腺癌患者的治疗结果和生活质量提供潜在的解决方案。
a 瑞士苏黎世大学心理学系可塑性研究方法 b 瑞士苏黎世大学和苏黎世联邦理工学院苏黎世神经科学中心 (ZNZ) c 瑞士苏黎世大学大学研究优先计划“健康老龄化动力学” d 法国帕莱索巴黎萨克雷大学、Inria、CEA e 德国莱比锡马克斯普朗克人类认知和脑科学研究所神经病学系 f 加拿大魁北克省蒙特利尔蒙特利尔大学老年医学研究所功能神经影像科 g 美国德克萨斯州奥斯汀德克萨斯大学戴尔医学院计算神经影像实验室 h 美国密歇根州底特律韦恩州立大学老年学研究所和心理学系 i 加拿大蒙特利尔康考迪亚大学心理学系 j 大脑与运动研究所认知神经解剖学实验室épinière,法国巴黎 k 德克萨斯大学心理学系,美国德克萨斯州奥斯汀
实习飞行软件、计算机视觉和人工智能瑞士苏黎世公司:Daedalean 是一家总部位于苏黎世的初创公司,由前谷歌和 SpaceX 工程师创立,他们希望在未来十年内彻底改变城市航空旅行。我们结合计算机视觉、深度学习和机器人技术,为飞机开发最高级别的自主性(5 级),特别是您可能在媒体上看到的电动垂直起降飞机。如果您加入我们的实习,您将有机会与经验丰富的工程师一起工作,他们来自 CERN、NVIDIA、伦敦帝国理工学院或……自治系统实验室本身。您将构建塑造我们未来的尖端技术。最重要的是,我们还提供在瑞士阿尔卑斯山试飞期间加入我们飞行员的机会。项目:不同团队提供机会。我们想更多地了解您,以及如何让您的实习成为双方宝贵的经历。告诉我们你一直在做什么,以及你想在我们的团队中从事什么工作。它与深度学习有关吗?状态估计?运动规划?计算机视觉?或者别的什么?向我们展示你的热情所在。如果我们可以在你想从事的领域提供指导和有趣的机会,我们将一起敲定细节。资格: 强大的动手 C++ 证明解决问题的能力 如何申请: 将您的简历/履历发送至 careers@daedalean.ai 。请告诉我们一些关于您自己的信息,为什么您认为自己适合我们以及为什么我们适合您。
征文:教育和教育研究中的人工智能国际研讨会 (AIEER) AIEER 2024 教育和教育研究中的人工智能国际研讨会是第 27 届欧洲人工智能会议 ECAI 2024 [https://www.ecai2024.eu/] 的一部分。本次研讨会定于 2024 年 10 月 19 日至 20 日星期六和星期日举行。 研讨会范围 本次研讨会有两个不同的重点,旨在更广泛地面向教育人工智能领域。 第 1 部分。由社会科学主导的讨论,讨论人工智能应用可能有助于解决的教育中的实际问题。这包括教育和教学人工智能的研究,也包括社会科学、经济学和人文学科,包括所有学科,如教育和教学实际行动、以教育需求为重点的劳动力市场研究、教育史和相关教育文化遗产,以及决策和行为科学观点的信息预测。一方面,我们关注人工智能、教育和社会之间的联系。这包括定量和定性研究、分析教育和劳动力市场数据的数据科学方法、推荐系统的人工智能方法以及数字化学习。另一方面,我们关注如何使用人工智能来突破该领域的界限。这包括开发新方法(包括使用人工智能的方法)、寻找和提供可访问的新数据源、丰富数据等等。在这两种情况下,不同观点之间的沟通和相互理解至关重要,这也是本次研讨会的目标之一。更广泛地说,我们感兴趣的是人工智能方法如何影响教育的所有领域以及企业和劳动力市场。这包括从小学到高等教育的所有教育部门如何受到人工智能方法的影响和对其作出反应的方法。用人工智能方法设计数字化未来为教育提出了几个问题:在最广泛的层面上,立法和规范问题;在公司层面,关于投资决策以及如何保持生产力和劳动力的问题;在个人层面,关于资格以及哪些技能需要应用和可能重新学习的问题。因此,技能和资格是教育和教育研究中人工智能的核心。第 2 部分。关于可以开发哪些人工智能应用程序(以及如何开发)来解决第 1 部分提出的问题的(计算机科学主导)讨论。使用基于人工智能的系统来支持教学或学习已经发展了 40 多年,但近年来,由于 COVID-19 大流行期间电子学习工具的使用增加以及最近生成人工智能的爆炸式增长,其增长显着增加。我们正处于这一领域发展的关键时刻,人工智能专家和教育专家必须携手合作,以在教学过程中最佳地利用这项技术。本次研讨会旨在为展示新提案和反思这一具有如此社会意义的领域的最新技术创造空间。在第一部分中,我们特别关注人工智能的技术方面,重点关注用于内容创建(生成式人工智能)、学生分析(机器学习)、学习分析或教师可解释的人工智能方法的具体技术
嵌合抗原受体 (CAR) T 细胞疗法彻底改变了血液系统恶性肿瘤的治疗,在原本难治的疾病中提供了显著的缓解率。然而,将其扩展到更广泛的肿瘤学应用面临着重大障碍,包括在实体瘤中的疗效有限、与毒性相关的安全问题以及制造和可扩展性方面的后勤挑战。本综述严格审查了旨在克服这些障碍的最新进展,重点介绍了 CAR T 细胞工程的创新、新的抗原靶向策略以及在肿瘤微环境中的递送和持久性的改进。我们还讨论了同种异体 CAR T 细胞作为现成疗法的开发、减轻副作用的策略以及 CAR T 细胞与其他治疗方式的整合。这项全面的分析强调了这些策略在提高 CAR T 细胞疗法的安全性、有效性和可及性方面的协同潜力,为其在癌症治疗中的进化轨迹提供了前瞻性的视角。
欧洲国家的目标是在本世纪中叶之前实现净零CO 2排放。因此,欧洲能源系统,尤其是电力系统必须发生重大变化。脱碳需要越来越多的迁移率和加热部门的电气化,这使电保留在通往净零CO 2排放的路径上的核心作用。但是,要满足排放靶标,电力供应必须起源于低排放的产生来源。根据Tyndp 2018的情况,预计欧洲的电力供应将主要来自可再生能源转换器,从而引入了能源系统的新挑战。由于可再生能源的季节性,包括瑞士在内的大多数欧洲国家都将面临电力系统供应的季节性失衡。根据缺乏电力的国家的国家能源战略,应涵盖其邻国进口供应的短缺。这项研究评估了不同平衡区域和高度可再生能源系统之间的并发赤字和剩余情况。因此,根据已出版的场景,通过分析瑞士及其邻国奥地利,德国,法国和意大利的案件来确定可能的不可行的能量平衡。结果表明,瑞士及其邻国尤其是在冬季,存在同时存在的赤字情况。因此,该分析的结果挑战了当前的能源策略,并旨在达到瑞士和欧洲的净零CO 2排放。
刺痛(干扰素基因的刺激剂)途径在激活先天免疫方面至关重要,使其成为癌症免疫疗法的有希望的靶标。激动剂表现出了增强免疫反应的潜力,尤其是在对传统疗法抗性的肿瘤中。这篇学术评论研究了刺痛激动剂的各种类别,包括CDN类似物,非CDN化学型,注入CDN的外泌体,工程细菌载体和小分子核酸的杂化结构。我们强调了它们的机制,临床试验进度和治疗结果。尽管这些代理人提供了显着的希望,但毒性,肿瘤异质性和递送方法等挑战仍然是其更广泛的临床使用的障碍。正在进行的研究和创新对于克服这些障碍至关重要。激动剂可以通过利用人体的免疫系统靶向和消除癌细胞来在癌症治疗中起变革性的作用,尤其是对于难以治疗恶性肿瘤的患者。
通过使用计算机视觉,AI解释了复杂的医学成像,为我们对生理条件的理解增加了一层深度。 自然语言理解(NLU)将这种能力扩展到文本数据,通过临床注释进行解析,并报告了提取相关健康信息的结果,将其无缝整合到更广泛的健康状况中。 图形神经网络(GNNS)通过对不同的健康决定因素之间的复杂关系进行建模,从而提供了一个动态框架,从而反映了健康因素的现实世界相互联系,从而进一步丰富了该数据综合。通过使用计算机视觉,AI解释了复杂的医学成像,为我们对生理条件的理解增加了一层深度。自然语言理解(NLU)将这种能力扩展到文本数据,通过临床注释进行解析,并报告了提取相关健康信息的结果,将其无缝整合到更广泛的健康状况中。图形神经网络(GNNS)通过对不同的健康决定因素之间的复杂关系进行建模,从而提供了一个动态框架,从而反映了健康因素的现实世界相互联系,从而进一步丰富了该数据综合。
