为了降低电网的功耗和成本,本文讨论了基于粒子群优化 (PSO) 的模糊逻辑控制器 (FLC) 的开发,用于微电网 (MG) 应用中电池储能系统 (ESS) 的充电 - 放电和调度。最初,FLC 被开发用于控制储能系统的充电 - 放电,以避免传统系统的数学计算。然而,为了改进充电 - 放电控制,使用 PSO 技术优化 FLC 的隶属函数,同时考虑可用功率、负载需求、电池温度和充电状态 (SOC)。调度控制器是根据负载实现低成本不间断可靠电源的最佳解决方案。为了降低电网电力需求和消耗成本,还引入了最佳二进制 PSO 来在一天中的不同时间在各种负载条件下调度 ESS、电网和分布式电源。得到的结果证明了所开发的基于 PSO 的模糊控制的鲁棒性,可以有效地管理电池充电和放电,同时将电网功耗降低 42.26%,将能源使用成本降低 45.11%,这也证明了该研究的贡献。© 2020 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY-NC-ND 许可协议开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)。
选择合适的飞机可以为航空公司带来竞争优势,然而,有许多因素会给选择过程带来一定程度的不确定性。通过消除这种不确定性,航空公司可以增加实现长期目标的机会。新的多标准决策 (MCDM) 方法为决策者提供了选择合适飞机的令人满意的解决方案。因此,我们专注于使用新的 MCDM 方法对最合适的商用飞机替代方案进行多维评估和选择。本文为航空公司规划人员在不确定的情况下选择商用飞机提供决策支持。在本研究中,与文献中关于飞机选择的其他研究不同,此处提出的模型使用区间型 2 模糊分析层次过程 (IT2FAHP) 和区间型 2 模糊技术按与理想解的相似性排序 (IT2FTOPSIS) 混合方法。所提出的飞机选择模型允许商业航空公司根据特定标准评估飞机:经济性能、技术性能和环境影响,从而帮助决策者在不确定的环境中选择合适的飞机。除了供商业航空公司使用外,研究中的方法还可以应用于教练机、货机和军用飞机的选择。我们的研究结果表明,空客 A321neo 在技术方面、经济方面和环境方面都是最适合航空公司的商用飞机。
选择合适的飞机能为航空公司带来竞争优势,然而许多因素会给选择过程带来一定程度的不确定性。通过消除这种不确定性,航空公司可以增加实现其长期目标的机会。新的多准则决策(MCDM)方法为决策者提供了选择合适飞机的满意解决方案。因此,我们专注于使用新的 MCDM 方法对最合适的商用飞机替代方案进行多维评估和选择。本文为航空公司规划者在不确定的情况下选择商用飞机提供决策支持。在本研究中,与文献中关于飞机选择的其他研究不同,此处介绍的模型使用区间型 2 模糊层次分析法(IT2FAHP)和按与理想解的相似性排序的区间型 2 模糊技术(IT2FTOPSIS)混合方法。所提出的飞机选择模型允许商业航空公司根据特定标准评估飞机:经济性能、技术性能和环境影响,从而帮助决策者在不确定的环境中选择合适的飞机。除了供商业航空公司使用外,研究中的方法还可以应用于教练机、货机和军用飞机的选择。我们的研究结果表明,空客 A321neo 在技术方面、经济方面和环境方面都是最适合航空公司的商用飞机。
摘要。本文重点研究了一种在具有模糊偏好的纯交换经济 (PXE-FP) 中实现均衡的新模型。该模型将交换、消费和主体在消费集中的模糊偏好整合在一起。我们在消费集上建立了一个新的模糊二元关系来评估模糊偏好。此外,我们证明了在某些条件下消费集中存在一个连续的模糊保序函数。通过模糊非合作博弈中模糊纳什均衡存在的新结果,证实了 PXE-FP 存在模糊竞争均衡。在模糊非合作博弈中,任何主体的所有策略配置的收益都是模糊数。最后,我们表明模糊竞争均衡可以表征为相关拟变分不等式的解,从而得到均衡解。
摘要 — 不断增长的空中交通需求和高度互联的空中交通网络给该行业带来了巨大压力,要求其优化空中交通管理 (ATM) 相关性能并开发强大的 ATM 系统。最近在准确预测飞机滑行时间方面所做的努力已在生成更高效的滑行路线和时刻表方面取得了重大进展,从而使其他关键的空侧操作受益,例如跑道排序和登机口分配。然而,很少有研究致力于量化与滑行飞机相关的不确定性。基于确定性和准确的飞机滑行时间预测生成的路线和时刻表可能无法在由于天气条件、操作场景和飞行员行为等因素而产生的不确定性下恢复,从而损害整个系统的性能,因为滑行延误可能会在整个网络中传播。因此,本文的主要目的是利用多目标模糊规则系统根据历史飞机滑行数据更好地量化这种不确定性。初步结果表明,所提出的方法可以以更具信息量的方式捕捉不确定性,因此代表了一种有前途的工具,可以进一步制定稳健的滑行计划,以减少由于滑行时间不确定而造成的延误。
智利校园Kasper Building Austral De Chile大学建筑与城市主义研究所,智利瓦尔迪维亚校园Isla Teja。 div>5 div>
摘要。本文提出了一种基于方位/仰角环跟踪控制器的新型模糊PID控制方案,以提高跟踪实时目标的精度。模糊PID控制器由三个模糊逻辑控制器和一个带模型参考自适应控制的PID控制器组成,其中PID控制器的三个参数的自适应增益由模糊逻辑规则进行微调。所提出的控制算法的隶属函数(MF)与一般算法不同,其中输入和输出的MF彼此不同,例如MF类型,MF数量和显示范围。将所提出的模糊PID控制方法的性能与普通PID控制算法进行了比较。仿真验证了模糊PID控制模型跟踪性能的有效性,该模型具有零超调、良好的瞬态性能和快速收敛跟踪能力。模糊PID跟踪控制算法可以提高系统整体性能,为深入研究基于机载光电稳定平台的控制系统奠定理论基础。关键词:模糊PID,跟踪控制器,优化方案,稳定平台
航空伽马射线光谱法在与岩石相关时相对容易理解,但风化材料中的响应和放射性元素分布则鲜为人知。这项工作使用航空伽马射线光谱法和测高法来确定位于巴西亚马逊西部地区红土壳和拆解产品出现概率较高的区域。通过布尔和模糊技术使用地图代数来创建可预测性数字模型,突出显示红土壳出现的有利区域。布尔技术中使用了索引叠加法。模糊技术使用了模糊代数乘积运算符、模糊代数和运算符和模糊伽马运算符。两种模型都表明,预测的有利性和现场结壳的存在之间存在良好的相关性,然而,模糊模型显示出更高的相关性,并突出显示了布尔模型未识别的区域。相反,布尔模型允许在最终地图上单独可视化与每个变量或其可能组合的影响相关的区域。因此,基于应用于测高和机载伽马射线光谱数据的数学模型识别红土结壳是一种新工具,它将对地质填图和对与风化材料中的响应和放射性元素分布相关的理解做出重大贡献。© 2016 Elsevier B.V. 保留所有权利。
摘要。近年来,混合软计算方法的使用表明,在各种应用中,几种技术的协同作用优于单个技术。例如,使用神经模糊系统和进化模糊系统将模糊系统的近似推理机理与神经网络和进化算法的学习能力融合在一起。进化神经系统融合了神经计算方法与进化计算的解决方案搜索能力。这种混合方法保留了可以通过三个基本软计算范式完全集成来克服的局限性,这导致了进化的神经模糊系统。本章的目的是提供混合软计算系统的描述,并特别注意进化算法和神经网络的联合使用,以便将模糊系统具有学习和适应性功能。在介绍基本软计算范式之后,考虑了各种形式的杂交,这导致了进化神经模糊系统。本章还介绍了一种特定的方法,该方法共同使用神经学习和遗传优化来从给定数据中学习模糊模型,并优化它以进行准确性和可解释性。