人类如何实现如此高度的亲社会行为是一个引人注目的主题。探索人类亲社会性的神经基础已在近几十年来引起了人们的重大关注。然而,人类亲身社会性的基础神经机制仍有待阐明。为了解决这一知识差距,我们分析了15场经济游戏中的多模式脑成像数据和数据。结果揭示了大脑特征和亲社会行为之间的几个重要关联,包括较强的半球连通性和较大的call体体积。更大的功能分离和整合,以及较少的髓磷脂图与较厚的皮质相结合,与亲社会行为有关,尤其是在社会大脑区域内。当前的研究表明,这些指标是人类亲社会行为的大脑标志物,并为人类亲社会行为的结构和功能性大脑基础提供了新的见解。
摘要。我们提供了ML-KEM的正确性和IND-CCA安全性的正式验证的证明,即基于Kyber的键盘封装机制(KEM),该机制(KEM)正在接受NIST的标准化。证明是通过EasyCrypt进行机器检查的,其中包括:1)BOS等人之后的Kyber Base Base公开加密方案的正确性(解密失效概率)和IND-CPA安全性的形式化。在Euro S&P 2018; 2)在随机甲骨文模型(ROM)中,富士基 - 奥卡马托转换的相关变体的形式化,该变换紧随其后(但不是完全)Hofheinz,HövelmannsandHövelmannsand Kiltz,tcc 2017; 3)证明了ML-KEM规范的Ind-CCA安全性及其作为KEM的正确性遵循了先前的结果; 4)两个正式验证的ML-KEM用Jasmin编写的实现,这些实现是恒定的,在功能上等同于ML-KEM规范,因此,因此,继承了上几点中建立的可证明的安全性保证。 顶级定理给出了独立的混凝土界限,以使ML-KEM的正确性和安全性降低到模块lwe的(变体)。 我们通过利用各种EasyCrypt功能来讨论它们如何模块化构建。在Euro S&P 2018; 2)在随机甲骨文模型(ROM)中,富士基 - 奥卡马托转换的相关变体的形式化,该变换紧随其后(但不是完全)Hofheinz,HövelmannsandHövelmannsand Kiltz,tcc 2017; 3)证明了ML-KEM规范的Ind-CCA安全性及其作为KEM的正确性遵循了先前的结果; 4)两个正式验证的ML-KEM用Jasmin编写的实现,这些实现是恒定的,在功能上等同于ML-KEM规范,因此,因此,继承了上几点中建立的可证明的安全性保证。顶级定理给出了独立的混凝土界限,以使ML-KEM的正确性和安全性降低到模块lwe的(变体)。我们通过利用各种EasyCrypt功能来讨论它们如何模块化构建。
公司基于这些前瞻性陈述,其目前的假设,期望和对未来事件的预测。尽管该公司认为这些前瞻性陈述中所反映的期望是合理的,但很难预测已知因素的影响,并且我们无法预料所有可能影响我们提议的结果的因素。所有前瞻性陈述均基于本演讲之日起提供给公司的信息。
人类癌细胞系的药物敏感性预测模型构成了在临床前环境中识别潜在反应性因素的重要工具。整合从一系列异质数据中得出的信息至关重要,但仍然是不平凡的,因为数据结构的差异可能会阻碍拟合算法将足够的权重分配给不同的OMIC数据中包含的互补信息。为了抵消这种效果,该效果倾向于仅导致一种数据类型主导所谓的多摩斯模型,我们开发了一种新颖的工具,使用户能够在第一步中分别训练单摩尼斯模型,并在第二步中将它们集成到多摩s模型中。进行了广泛的消融研究,以促进对奇异数据类型及其组合的各自贡献的深入评估,从而有效地识别它们之间的冗余和相互依赖性。此外,单词模型的集成通过一系列不同的分类算法实现,从而可以进行性能比较。被发现与药物敏感性显着转移相关的分子事件和组织类型集可以返回,以促进对药物反应性潜在驱动因素的全面而直接的分析。我们的两步方法产生了一组实际的多媒体泛 - 批处理分类模型,这些模型对GDSC数据库中的大多数药物具有很高的预测。在具有特定作用模式的有针对性药物的背景下,其预测性能与将多词数据合并到简单的一步方法中的分类模型相比。此外,案例研究表明,它在正确识别已知的特定药物化合物的关键驱动因素以及为其他候选者提供其他药物敏感性因素方面取得了成功。
自2005年FDA批准Sorafenib以来,口服多次激酶抑制剂已成为转移性肾细胞癌(MRCC)的基石治疗。2021年更新的欧洲泌尿外科协会肾细胞癌指南建议将免疫检查点抑制剂加上口服酪氨酸激酶抑制剂(TKI)组合,以对MRCC进行第一线治疗。相对于单独的口服TKI,这种方法在无进展和整体生存(OS)方面取得了可观的增长。对于无法服用或耐受检查点抑制剂的患者以及对免疫疗法反应的患者,仍考虑口服TKI单一疗法。MRCC患者中的1个口腔TKI治疗序列的研究很少2,可能构成疾病进展的预后标志。3,4
Anuj Jalwal先生,Garima Kumawat女士摘要:社交媒体的出现彻底改变了信息的传播和社会话语的动态。具有快速传播内容的能力,数字平台已成为塑造性别和种姓叙事,影响公众舆论,政策框架和基层行动主义的强大工具。社交媒体用作双刃剑 - 一方面,它为边缘化,促进意识和动员提供了声音;另一方面,它构成了诸如错误信息,在线骚扰和数字排除等挑战。本文深入研究了社交媒体对性别和种姓叙事的深远影响,强调了它如何成为当代社会运动的基本力量。数字平台,包括Twitter,Facebook和Instagram,使历史上被压迫的群体挑战了主导的叙事并要求正义。#METOO,#DalitlivesMatter和#AmbedKariteMovements之类的动作已获得前所未有的动力,引起人们对系统性问题的关注并促使社会和法律改革。社交媒体内容的病毒性质可确保即使本地化问题也可以受到全球关注,从而加强集体行动主义。此外,本文研究了算法,数字素养差距和状态干预措施如何影响这些讨论的轨迹。虽然数字平台声称可以促进自由表达,但人工智能和算法偏见的作用通常会以可能加强现有功率结构的方式来策划内容。关键字:数字起义,社交媒体,性别,种姓,行动主义,在线话语由于数字划分进一步加剧了在线话语中的不平等,因此排除了边缘化社区。尽管具有变革性的潜力,但社交媒体充满了风险,包括网络欺凌,错误信息和有针对性的骚扰。妇女和达利特活动家经常成为在线虐待的受害者,沉默的声音并阻碍进步。此外,国家监视和审查制度对数字行动主义的真实性和可持续性构成了重大威胁。本文探讨了政策和法规如何在保留言论自由和民主参与原则的同时确保更安全的数字空间。使用混合方法方法,本研究整合了定性案例研究和定量数据分析,以评估社交媒体在放大性别和种姓叙事方面的有效性。批判性地评估了这些数字运动是否会导致切实的社会变化,还是仅限于现实世界影响有限的在线空间。本文结束了,强调需要一个包容性的数字生态系统,在这种生态系统中,不仅听到边缘化的声音,而且受到了保护。增强数字素养,实施强大的反骚扰政策以及确保公平的互联网访问对于维持有意义的话语至关重要。随着社交媒体的不断发展,其作为性别催化剂和种姓正义的潜力取决于优先考虑包容性,道德监管和民主参与的积极措施。
毫无疑问,对该品牌的认识得到了FormulaOne®的不断增长以及我们参与Motorsport的巅峰之作的支持。这项强大的营销活动为我们的客户,供应商和经销商提供了无与伦比的比赛周末的访问,这一巨大成功的Netflix系列已进一步提高了生存。是流媒体平台上最受关注的节目之一,这是2024赛季的第一集,其中包括阿斯顿·马丁(Aston Martin),将我们的品牌和产品定位在数百万观众中。我们与FormulaOne®的关联进一步发展,阿斯顿·马丁(Aston Martin)提供了Formula1®的官方FIA安全和医疗车,定期展示我们Vantage和DBX707型号的高性能证书。新的Vantage GT3赛车的成功今年进一步强调了我们的赛车DNA,球队在世界各地的许多赛车系列赛中表演,包括国际汽联世界耐力冠军赛,我们的合作伙伴团队在2024年9月的赛道上录制了赛车的核心赛事。
Lemarquis博士和研究小组着手探索两种情况下的胸腺再生机制,即癌症疗法和衰老,这是因为癌症患者非常容易感染。科学家首先在鼠模型中研究了与治疗相关的伤害,以了解胸腺如何受损,并在什么条件下开始反弹。然后,他们将成像和分析技术与机器学习结合在一起,以识别在再生过程中被激活的特定途径。
我们旨在开发系统性硬化症(SSC)子类型分类器工具,以在患者的床边使用。我们比较了静止(5分钟)的心率变异性(HRV),并响应于具有弥漫性(n = 16,DCSSC)和有限(n = 38,LCSSC)的患者(n = 58)的正抑制(5分钟)(n = 58)。在时间,频率和非线性域中从Beat-Beat RR间隔中评估HRV。DCSSC组与LCSSC组不同,主要是较高的心率(HR)和较低的HRV,在depubitus和正稳态条件下。站立机动降低了HR标准偏差(SD_HR),Poincaré拟合椭圆的RR间隔图(SD2)的主要轴长以及DCSSC组中的相关维度(CORDIM),而LCSSC组中这些HRV索引增加了(P = 0.004,P = 0.004,p = 0.002,以及增加了这些HRV指数。我们确定了5个最有用和判别的HRV变量。We then compared 341 classifying models (1 to 5 variables combinations × 11 classifier algorithms) according to mean squared error, logloss, sensitivity, specificity, precision, accuracy, area under curve of the ROC-curves and F1-score.f1得分范围从最佳1-可添加模型的0.823到4个变量最佳模型的最大0.947。最具体和精确的模型包括SD_HR,SD2和Cordim。总而言之,我们提供了高性能分类模型,能够从ECG记录中区分易于在床边执行的有限皮肤SSC子类型。模型基于1至5 HRV索引用作自主综合影响心脏活动的非线性标记。
摘要。用户如何与智能系统进行交互是由系统内部工作的主观心理模型来确定的。在本文中,我们提出了一种基于卡片排序的新方法,以定量地识别推荐系统的这种心理模型。使用此方法,我们进行了在线研究(n = 170)。将分层聚类应用于结果显示出不同的用户组及其各自的心理模型。独立于所使用的建议系统,一些术语具有严格的基于程序性的,而另一些则是基于概念的心理模型。此外,心理模型可以被描述为技术或人性化。虽然基于程序的心理模型与透明度感知呈正相关,但人性化模型可能会影响对系统信任的感知。基于这些发现,我们在透明智能系统设计中考虑了用户特定的心理模型的三个含义。