45V 美国法典 [USC] § 45V,《降低通货膨胀法案》 AIB 发行机构协会 BIL 两党基础设施法 CAISO 加州独立系统运营商 CEBA 清洁能源买家协会 CFE-ATC 全天候无碳能源 DOE 美国能源部 EAC 能源属性证书 EIA 能源信息管理局 EDF 环境保护基金 EPA 美国环境保护署 ERCOT 德克萨斯州电力可靠性委员会 ERM 环境资源管理局 EU 欧盟 FERC 联邦能源管理委员会 G20 二十国集团 gCO 2 /MJ 每兆焦耳二氧化碳克数 GGO Geaux 绿色选择 GHG 温室气体 GREET 温室气体、受管制排放和交通运输中的能源使用 GW 吉瓦 IRA 《降低通货膨胀法案》 ISO 独立系统运营商 ISO-NE 新英格兰独立系统运营商 ITC 投资税收抵免 kg CO 2 e/kg H 2 每千克氢气对应的千克二氧化碳当量 kg CO 2 e/MWh 对应的千克二氧化碳当量每兆瓦时
执行摘要 法国电力公司 (EDF) 是一家法国跨国电力公司,主要由法国政府所有。2021 年,EDF 从各个来源发电的百分比为:核能 - 78.2%、可再生能源 - 12.8%、天然气 - 7.3%、燃料油 - 1% 和煤炭 - 0.7%,总体平均二氧化碳强度为 48 克二氧化碳当量/千瓦时。虽然 EDF 91% 的电力生产没有直接温室气体排放,但 EDF 仍有少数燃煤电厂,占总产量的不到 1%。EDF 的目标是到 2030 年不再发电,并将总体二氧化碳强度降至 35 克二氧化碳/千瓦时。由于核电站的平均使用年限约为 36 年,EDF 于 2015 年启动了一项重大翻新计划 (Grand Carénage),以满足核电翻新的需求。 EDF 的绿色债券框架将主要为与可再生能源和核能发电相关的项目提供资金。资格标准力求遵循欧盟分类法中的气候缓解和相关无重大损害标准。其目的是将大部分收益用于为新项目提供资金。虽然该框架的地理范围是全球性的,但符合条件的核能项目仅限于法国本土。我们将该框架评为 CICERO 中绿色,并给予其治理评分“优秀”。对于非核能活动,预计可再生能源项目将占主导地位,同时还有大量的配电网投资。目前尚未就核能在绿色融资组合中的比重做出决定。在该计划的早期,首批获得融资的项目可能是翻新项目。EDF 承诺在发行前就债券是否为核能提供资金进行沟通,并将尽最大努力传达指示性项目分配和回顾份额。主要优势 EDF 专注于可再生能源和核能的绿色融资,这是该框架的主要优势。我们还发现,EDF 拥有强大的治理结构,目标明确,选择标准严格,报告出色,所有这些都加强了绿色债券框架。绿色融资的资格标准可能与欧盟分类标准一致,见下文。我们认为与分类标准的协调是该框架的另一个优势。 主要缺陷 核能发电是一种气候友好型能源,将使实现巴黎协议中将全球变暖限制在 2°C 以下的目标变得更加容易。另一方面,核能发电一般存在与最终废物处理相关的相当大的风险,以及与武器扩散和最大可信意外辐射可能性相关的低概率/高影响风险,这些风险将对区域造成毁灭性后果。虽然其中一些风险可以通过法国管理核电安全的法规得到缓解
摘要:本文旨在评估从澳大利亚大型太阳能光伏 (PV) 发电厂通过长距离海底高压直流 (HVDC) 电缆进口到新加坡的电力的生命周期温室气体 (GHG) 排放。开发了一个成本优化模型来估算系统组件的容量。建立了一个全面的生命周期评估模型来估算这些组件的制造和使用排放量。我们的评估表明,要满足新加坡五分之一的电力需求,需要一个装机容量为 13 GW PV、17 GWh 电池存储和 3.2 GW 海底电缆的系统。这种系统的生命周期温室气体排放量估计为 110 gCO 2 eq/kWh,其中大部分来自太阳能光伏板的制造。电缆制造对温室气体排放的贡献并不大。通过改变满负荷时间和电缆长度,评估发现,距离新加坡较近的站点可能以相同/更低的碳足迹和更低的成本提供相同的能源,尽管日照量低于澳大利亚。但是,这些站点可能比澳大利亚的沙漠造成更大的土地使用变化排放量,从而抵消了较短高压直流电缆的优势。
可再生能源技术在电力领域的快速发展为电力系统带来了新的重大挑战,因为它们具有很强的间歇性。因此,需要更大的灵活性来确保系统能够在大量可变可再生能源 (RES) 的情况下可靠且经济高效地运行。电力存储和跨境互联被视为进一步整合这些能源的两个关键组成部分。因此,本研究的目的是以哥伦比亚电力系统为例,分析电网规模电力存储和互联在整合可变可再生能源方面的技术经济效应。EnergyPLAN 工具用于构建参考系统模型和未来场景。首先,研究了电力存储和互联对电力系统的技术影响。随后,应用多目标进化算法 (MOEA) 进行技术经济优化并确定一组最佳配置。结果表明,提高储能和互联水平可以进一步促进可变可再生能源的渗透,实现年总发电量约 96.8%。此外,燃料消耗和二氧化碳排放量的大幅减少可能使电力部门的排放因子达到约 26.5 gCO 2e /kWh。© 2021 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY-NC-ND 许可协议开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)。
本研究论文介绍了一种具有改进电网电能质量的 PV 集成多功能非车载 EV 充电器的 MATLAB 仿真与分析。所提出的解决方案利用自适应陷波滤波器 (ANF) 和面向电网的转换器的多级拓扑来准确估计基本 EV 电流和电网电压,从而生成纯正弦参考电流和同步电压模板。充电器可以在电网连接 (GCO) 和独立 (SO) 模式下运行,提供电网电流谐波补偿、无功功率支持和紧急情况下的备用电源。仿真使用 DC Link 系统直接为电动汽车、储能系统充电,在多云条件下,7 级级联 H 桥双向双转换器 (CHBDC) 将来自电网的交流电转换为电动汽车充电。采用电网同步技术实现模式之间的平稳过渡。仿真结果表明,所提出的系统有效地实现了电能质量的提高,减少了谐波失真,同时保持了稳定的 DC Link 电压调节。该系统有可能促进电动汽车充电基础设施的可持续发展,减少碳足迹,并促进可再生能源的使用。总的来说,这项研究意义重大,因为它为将可再生能源整合到电动汽车充电系统中提出了一个有前途的解决方案,从而走向更清洁、可持续的未来。
在1990年代中期为美国开发了表面辐射预算(Surfrad)网络,以响应人们对更复杂的原位表面辐射测量的需求,以支持卫星系统验证;数值模型验证;以及现代气候,天气和水病研究应用。运营数据收集始于1995年,有四个站点; 1998年增加了两个站。自2000年对研究社区的正式介绍以来,已经对该网络的产品和基础架构进行了一些补充和改进。更好地代表美国的气候类型,于2003年6月在南达科他州的苏福尔斯附近安装了第七个Surfrad车站。在2001年,用于扩散太阳能测量的仪器被一种类型的金字表替换,该仪表没有与其接收表面的红外辐射冷却相关的偏差。随后,使用公认的方法纠正了1996年至2001年的偏置弥漫性太阳能数据。其他改进包括实施清晰的诊断算法和相关产品,紫外线-B(UVB)数据记录中的连续性更好,降低了衰落的红外测量误差潜力以及气溶胶光学深度深度算法的发展。,只有气溶胶光学深度产物尚未完成。所有Surfrad站都是国际基线表面辐射网(BSRN)的成员。数据定期在瑞士苏黎世的BSRN档案中定期提交。通过此隶属关系,Surfrad网络于2004年4月成为全球气候观察系统(GCO)的正式组成部分。
在2005 - 2019年期间,公路汽车的摘要/越南人拥有1000名越南的人,与其他国家/地区的数据收集和实现过程相比,新注册的乘用车在9个座位下的新注册乘用车,2016-2020期,2016-2020新注册的新型乘用车的新型驾驶员9座,新型驾驶员9座的新型驾驶员9个座位,燃料的9个座位,燃料式驾驶员9个座位,这是新的注册车辆的9座,燃料的驾驶员9个座位,燃料的9个座位,燃料的9个座位,燃料的燃油式驾驶员9个座位。 2016-2020 Average engine displacement of newly registered vehicle Newly registered vehicle split by weight, 2016-2020 Average kerb mass of newly registered vehicle (tons) Weighted average fuel consumption by engine displacement Market share by engine displacement and weighted average FC Average FC by engine displacement and fuel type Average FC by engine displacement and engine type Average FC by range of engine displacement Weighted average fuel consumption by weight Market share by kerb mass and average fuel 9座以下新注册的乘用车的消费燃料消耗9座以下的新注册的乘用车的平均FC平均fc,以下是9个座位以下的座位,加权平均FC按燃料类型市场份额和平均CO 2排放值值量的历史平流CO 2排放性能和当前标准(GCO 2 /km)和制造商的新注册汽车数量< /div> < /div>
AD 厌氧消化 AGF 美国天然气基金会 ATB 先进技术基线 CAFO 集中式动物饲养作业 CCST 加州科学技术委员会 CH4 甲烷 CI 碳强度 CNG 压缩天然气 CO 一氧化碳 CO 2 二氧化碳 CO 2e 二氧化碳当量 CWC 纤维素减免信用 CWNS 清洁流域需求调查 DGE 柴油加仑当量 DOE 美国能源部 EFI 能源未来倡议 EIA 能源信息署 EPA 美国环境保护署 EREF 环境研究与教育基金会 gCO 2e/MJ 每兆焦耳的 CO 2e 克数 GHG 温室气体 H2S 硫化氢 HHV 高热值 IOU 投资者所有的公用事业 KDF 生物能源知识发现框架 LCFS 低碳燃料标准 LCOE 平准化能源成本 LFG 垃圾填埋气 LFGE 垃圾填埋气发电 LMOP 垃圾填埋甲烷推广计划 M&HDV 中型和重型车辆 MGD 百万加仑/天 MMBtu百万英热单位 MMtCO 2 e 百万公吨 CO 2 e MOU 市政公用事业 MSW 城市固体废物 N 2 氮气 NGV 天然气汽车 O 2 氧气 P2G 电转气 PA-CAP 宾夕法尼亚气候行动计划 PEM 质子交换膜 POLYSYS 政策分析系统 REC 可再生能源证书
AD 厌氧消化 AGF 美国天然气基金会 ATB 先进技术基线 CAFO 集中式动物饲养作业 CCST 加州科学技术委员会 CH4 甲烷 CI 碳强度 CNG 压缩天然气 CO 一氧化碳 CO 2 二氧化碳 CO 2e 二氧化碳当量 CWC 纤维素减免信用 CWNS 清洁流域需求调查 DGE 柴油加仑当量 DOE 美国能源部 EFI 能源未来倡议 EIA 能源信息署 EPA 美国环境保护署 EREF 环境研究与教育基金会 gCO 2e/MJ 每兆焦耳的 CO 2e 克数 GHG 温室气体 H2S 硫化氢 HHV 高热值 IOU 投资者所有的公用事业 KDF 生物能源知识发现框架 LCFS 低碳燃料标准 LCOE 平准化能源成本 LFG 垃圾填埋气 LFGE 垃圾填埋气发电 LMOP 垃圾填埋甲烷推广计划 M&HDV 中型和重型车辆 MGD 百万加仑/天 MMBtu百万英热单位 MMtCO 2 e 百万公吨 CO 2 e MOU 市政公用事业 MSW 城市固体废物 N 2 氮气 NGV 天然气汽车 O 2 氧气 P2G 电转气 PA-CAP 宾夕法尼亚气候行动计划 PEM 质子交换膜 POLYSYS 政策分析系统 REC 可再生能源证书
为什么Daiichi Sankyo?• Company Overview......................................................................................................................................................................................3 • Values & Behaviors ......................................................................................................................................................................................4 • A Message from Our U.S. President.............................................................................................................................................................5 • How WeTHRIVE...........................................................................................................................................................................................6 • Why This Mid-Sized Company?