游戏对于理解人性至关重要。游戏一直是生活的基本组成部分,存在于每一种文化和每一种情况下。通过游戏,人们学会了重要的生活技能,游戏塑造了每个社会的身份,同时不断促进文化的发展(Andrade,2020;Delgado,2011;Montero,2017)。在教育领域,游戏在课堂上的作用正在发生变化,这主要是由于信息和通信技术(ICT)的进步以及改进学习过程的需求。为了应对这些变化,游戏化学习(GBL)等方法应运而生,将电子游戏融入教育环境,以满足特定的学习目标(Pegalajar Palomino,2021;Torres 等人,2019)。GBL 使用电子游戏作为强大的工具来
* 我们感谢 Peter Aronow、Nicholas Christakis、Alan Gerber、Mikhael Guy、Markus Jantti、Woojin Lee、Walter Orenstein、Nicolas Pistolesi、François Poinas、Kenneth Scheve、Joaquim Silvestre、Milan Svolik、Roberto Veneziani、Rodolfo de la Torre 以及艾克斯-马赛经济学院、鲁汶大学胡佛教席、里尔大学、巴黎经济学院和布朗大学的研讨会参与者提供的建议和意见。耶鲁大学的 Collin Schumock、Austin Jang 和 Joon Lee 提供了出色的研究助理职位。† Philippe De Donder 感谢法国 ANR 在 ANR-17-EURE-0010 拨款(Investissements d'Avenir 计划)下提供的资金支持。 ‡ 通讯作者:humberto.llavador@upf.edu ORCID:0000-0003-4058-7486 § Humberto Llavador 感谢西班牙国家调查局 (AEI) 通过塞韦罗奥乔亚研发卓越中心计划 (巴塞罗那经济学院 CEX2019-000915-S) 和拨款 PID2023-153318NB- I00 和 PID2022-138443NB-I00 提供的资金支持。** John Roemer 感谢耶鲁大学社会与政策研究所提供的资金支持。
摘要。在本文中,我们引入了一类用于一般量子博弈的学习动力学,我们称之为“跟随量子正则化领导者”(FTQL),参考有限博弈的经典 FTRL 模板。我们表明,诱导的量子态动力学分解为 (i) 一个经典的交换分量,它以类似于 FTRL 下混合策略的演化的方式控制系统特征值的动态;以及 (ii) 系统特征向量的非交换分量,它没有经典对应项。尽管这个非经典组件带来了复杂性,但我们发现 FTQL 动力学在所有量子博弈中只会产生恒定的遗憾。此外,通过调整经典的稳定性概念来解释量子博弈状态空间的非线性几何,我们表明只有纯量子均衡才能在 FTQL 下稳定且具有吸引力,而作为部分逆,满足特定“变分稳定性”条件的纯均衡始终具有吸引力。最后,我们表明 FTQL 动态在量子最小最大博弈中具有庞加莱递归性,以这种方式扩展了量子复制器动态的一个最新结果。
理论的相关性自测试解决了我们是否可以从理论在特定信息处理任务中的表现中识别出理论中可实现的相关性集的问题。应用于量子理论,它旨在识别一种信息处理任务,该任务的最佳性能只有通过在任何因果结构中实现与量子理论相同的相关性的理论才能实现。在 [Phys. Rev. Lett. 125 060406 (2020)] 中,我们为此引入了一个候选任务,即自适应 CHSH 游戏。在这里,我们分析了在不同的广义概率理论中赢得这个游戏的最大概率。我们表明,具有由最小或最大张量积给出的联合状态空间的理论不如量子理论,然后再考虑其基本系统具有各种二维状态空间的理论中的其他张量积。对于这些,我们发现没有理论在自适应 CHSH 游戏中胜过量子理论,并证明在各种情况下都不可能恢复量子性能。这是迈向普遍解决方案的第一步,如果成功,将产生广泛的影响,特别是可以进行一项实验,排除所有可实现关联集与量子集不一致的理论。
natalia lazzati:nlazzati@ucsc.edu John K.-H. quah:ecsqkhj@nus.edu.sg koji shirai:kshirai1985@kwansei.ac.jp供有益的讨论和评论,作者感谢S. Berry,J.J.福克斯,K。Hirano,T。Hoshino,A。Kajii,Y。Kitamura,B。Kline,E。Krasnokutskaya,C。Manski,W。Newey,T。Sekiguchi,J。Stoye,J。Stoye,B。Stroulovici,B。Strulovici,S。Takahashi,Y。Takahashi,尤其是X. Tank。在以下活动中已向听众介绍了该项目的各种版本,我们感谢他们的评论:在阿里佐纳大学,约翰·霍普金斯大学,京都,卢旺斯(核心),纽约大学,赖斯大学,赖斯大学,西蒙大学,西米森大学,西米森·弗雷泽大学,新加坡大学,西北大学,陆军大学(dauphiai南加州,新加坡曼格大学,斯坦福大学,加州大学戴维斯分校,加州大学圣地亚哥分校,加拿大经济理论会议(Vancouver,2017年,2017年),不完整模型的计量经济学会议(Cemmap and Northwestern,2018年,2018年),第13大纽约大都会区的纽约市经济学社会(PRINCETICS COLLOETIC COLLOETICS MENCONER SUMICATIN) 2018)。koji Shirai在2019-2020学年的访问期间,感谢日本促进科学学会(Kakenhi 19K00155)的财务支持(Kakenhi 19K00155)和约翰·霍普金斯大学的款待。
根据研究,肝细胞癌(HCC)在死亡原因方面在全球排名第三,并且是总体上第五大常见的癌症类型。 因此,寻找新颖的诊断和治疗方法至关重要。 使用纳米技术作为一种癌症治疗,最近引起了很大的兴趣。 尽管在检测和治疗方面取得了重大进展,但在完全消除这种疾病之前还有很长的路要走。 因此,寻找诊断和治愈疾病的创新方法至关重要。 尤其是,具有与许多生物分子相当的大小相当的金属纳米颗粒(NP)及其纳米级结构的实质惰性引起了极大的兴趣。 由于其特殊的光学质量,通过各种配体的附着,生物相容性(生物启动性和低细胞毒性)以及出色的光学特性,金NP(AUNP)获得了重大兴趣。 当前的评论讨论了各种领域中AuNP的效率,包括成像,免疫疗法和用于治疗肝癌的光热疗法。 最后,本综述总结了AUNPS前景的局限性。根据研究,肝细胞癌(HCC)在死亡原因方面在全球排名第三,并且是总体上第五大常见的癌症类型。因此,寻找新颖的诊断和治疗方法至关重要。使用纳米技术作为一种癌症治疗,最近引起了很大的兴趣。尽管在检测和治疗方面取得了重大进展,但在完全消除这种疾病之前还有很长的路要走。因此,寻找诊断和治愈疾病的创新方法至关重要。尤其是,具有与许多生物分子相当的大小相当的金属纳米颗粒(NP)及其纳米级结构的实质惰性引起了极大的兴趣。由于其特殊的光学质量,通过各种配体的附着,生物相容性(生物启动性和低细胞毒性)以及出色的光学特性,金NP(AUNP)获得了重大兴趣。当前的评论讨论了各种领域中AuNP的效率,包括成像,免疫疗法和用于治疗肝癌的光热疗法。最后,本综述总结了AUNPS前景的局限性。
尽管疟疾人寄生虫具有巨大的重要性,但其超微结构的一些基本特征仍然晦涩难懂。在这里,我们采用高分辨率体积电子显微镜检查和比较了恶性疟原虫的可传染性男性和女性性血统的超微结构,以及更深入研究的无性血液阶段,重新审视了3D中先前描述的现象。这样做,我们通过示例在配子细胞中表现出多个线粒体的存在来挑战单个线粒体的广泛接受概念。我们还提供了配子细胞特异性细胞抑制剂或细胞口的证据。此外,我们生成了寄生虫内质网(ER)和高尔基体设备的第一个3D重建,以及在感染的红细胞中诱导的配子细胞诱导的外质结构。评估细胞器之间的互连性,我们发现了细胞核,线粒体和apicoplast之间的频繁结构作用。我们提供了证据,表明ER是与众多细胞器和配子细胞的三叶骨膜的混杂相互作用。这些体积电子显微镜资源的公共可用性将有助于其他具有不同研究问题和专业知识的其他人的重新介入。总的来说,我们以纳米尺度重建了恶性疟原虫配子细胞的3D超微结构,并阐明了这些致命的寄生虫的独特细胞器生物学。
抽象背景:在全身麻醉下用不锈钢冠(SSC)恢复原代磨牙后,咬合高度调节的不确定性。方法:这项研究的目的是利用三维有限元分析(3D-FEA)来评估摄入咬合高度对牙周韧带(PDL)的影响。锥形束计算机断层扫描(CBCT)图像。构建了三维(3D)模型,随后分组如下:A组,SSC(对照组)未恢复的落叶磨牙。B1组,使用SSC恢复到正常闭塞的落叶磨牙。B2组,使用SSC恢复到正常闭塞的第一个落叶磨牙。B3,第二个落叶磨牙使用SSC恢复到正常的闭塞。 C1组利用SSC将第一和第二个落叶磨牙恢复到1 mm的咬合增加。 C2组应用SSC将第一个落叶磨牙恢复至1 mm的咬合增加。 C3组利用SSC将第二个落叶磨牙恢复到1 mm的咬合增加。 D1组采用SSC将落叶磨牙恢复到2 mm的咬合增加。 D2组(第一个落叶磨牙)用SSC恢复至2 mm的咬合增加。 组D3,第二摩尔还用SSC恢复,以实现2 mm的咬合增加。 使用3D-FEA分别以0、45和90度的角度分别施加到0、45和90度的角度,以评估对PDL的生物力学效应。B3,第二个落叶磨牙使用SSC恢复到正常的闭塞。C1组利用SSC将第一和第二个落叶磨牙恢复到1 mm的咬合增加。C2组应用SSC将第一个落叶磨牙恢复至1 mm的咬合增加。C3组利用SSC将第二个落叶磨牙恢复到1 mm的咬合增加。D1组采用SSC将落叶磨牙恢复到2 mm的咬合增加。D2组(第一个落叶磨牙)用SSC恢复至2 mm的咬合增加。组D3,第二摩尔还用SSC恢复,以实现2 mm的咬合增加。使用3D-FEA分别以0、45和90度的角度分别施加到0、45和90度的角度,以评估对PDL的生物力学效应。结果:在B1组和A组之间观察到PDL内最大von-Mises应力的统计学显着差异(P <0.01)。在SSC恢复后的咬合高度与PDL中的最大VON-MISS应力之间观察到正相关(P <0.01)。PDL中的最大von- mises应力与SSC修复的咬合高度呈正相关,与负载角度和年龄的负相关(P <0.01)。结论:建议将用SSC恢复的摩尔齿的咬合高度保持在2 mm的范围内。
小说的主人公安德,也被称为安德,是一个拥有非凡智力和能力的六岁男孩。他是家中的第三个孩子,由于家庭过于拥挤,父母通常只能有两个孩子,但他的父母因年龄较大的孩子具有非凡的潜力而获得了例外。他的兄弟姐妹(包括暴力的哥哥彼得和富有同情心的姐姐瓦伦丁)的这种独特性格组合给安德带来了身份危机。他努力调和自己赢得胜利的愿望与对和平的需求,经常发现自己在内心的两种对立力量之间徘徊。安德的旅程充满了激烈的冲突,尤其是与斯蒂尔森和邦佐马德里的冲突,他出于自卫杀死了他们。然而,这种暴力也引发了人们对他行为背后动机的质疑,因为他试图在公平和同情与性格中更暴力的一面之间取得平衡。安德的哥哥彼得被描绘成一个冷酷无情、才华横溢但又残暴的人。彼得最初因为脾气而被认为不适合接受训练,但最终他成熟并形成了一个名为洛克的个性,这种个性表现出对世界的冷静和智慧影响。通过这个个性,他成为了霸主,世界的统治者,并说服世界采纳和平计划。瓦伦丁是威金家的二儿子,是一个极富同情心和智慧的人,是安德的安慰和保护之源。她通过反俄战争贩子德摩斯梯尼的个性在塑造公众舆论方面发挥了关键作用,这使她能够在不直接参与冲突的情况下影响他人。在整部小说中,瓦伦丁与安德和彼得的关系都很重要,尤其是她努力保护安德免受他哥哥的伤害。**安德的尘世起源和战斗学校中的人物简介** * **安德·威金**:在监视器被移除后,安德智胜史蒂尔森,导致了致命的一对一对抗。安德认为自己是出于自卫,这是他第一个非故意“谋杀”的受害者。 * **威金太太(安德的母亲)**:在摩门教家庭长大,后来因人口法而放弃了信仰,但偶尔仍保留祈祷习惯,为安德留下了珍贵的回忆。 * **威金先生(安德的父亲)**:天主教徒,来自一个大家庭(九个孩子),超过人口控制限额。他在家里公开讨论德摩斯提尼,不知道瓦伦丁是秘密作者,也不知道她不同意他的观点。 * **格拉夫上校**:战斗学校的校长,然后陪同安德去指挥学校。格拉夫亲自招募安德,尽管让他遭受孤立和苦难,但他还是表现出了爱意。值得注意的是,在安德与斯蒂尔森和邦佐的致命对抗中,他拒绝干预,后来面临军事法庭审判,但幸存下来。 * **佩斯将军**:IF 宪兵队长,访问战斗学校,讨论格拉夫对邦佐-安德冲突的处理。由于没有权力控制格拉夫,他的担忧被驳回。后来在返回地球的航班上观察了安德。 * **安德森少校**:负责战斗学校的战斗室并跟踪安德的进度。在格拉夫调职后,他晋升为校长,在计算机的帮助下,他为龙军指挥官安德设计了创新的战斗场景。 * **伊姆布少校**:战斗学校计算机系统的首席技术员,尤其是幻想游戏。虽然不熟悉它的完整设计,但他见证了安德在玩游戏时前所未有的改编,展示了游戏反映每个玩家心理功能的能力。 * **马泽·拉克姆**:第二次入侵的英雄,他的遗产在塑造安德的命运中发挥了关键作用,尤其是通过格拉夫设计的模拟战斗,利用拉克姆的相似性来欺骗安德相信它们只是训练演习。传奇指挥官马泽·拉克姆炸毁了女王虫的飞船,消灭了她所有的工虫。通过相对论,马泽设法幸存下来,现在在指挥学校训练安德·维京,保持了他出色的体力、快速的反应和智慧。最初,马泽表明自己是安德的敌人,强调一个有价值的老师必须承担对手的角色。只有马泽和格拉夫上校能在视频中识别出女王的飞船,这表明他们的专业知识。在安德在战斗学校期间,他与阿莱、伯纳德、比恩和沈成为朋友,每个人都在安德成为指挥官的过程中发挥了关键作用。马泽欺骗安德,让他认为与虫子的战斗只是游戏,而格拉夫则操纵事件来测试安德的能力。伯纳德最初对安德很有攻击性,但当他摔断手臂并道歉时,伯纳德最终成为了他的盟友之一。阿莱在战斗室里与安德成为朋友,后来领导他们的发射小组,并在第三次入侵期间与安德分享了神圣的时刻。比恩是一位杰出的天才,他迅速晋升成为安德最亲密的朋友和领导者之一。沈最初被伯纳德取笑,在收到一封署名为“上帝”的神秘信息后成为安德的盟友。佩特拉将安德置于自己的羽翼之下,教他在火蜥蜴军队中有效战斗的基本技能。当他担任卡通领袖时,她也是他在凤凰军团的指挥官,后来她成为他最可靠的小队队长之一。在他们一起进行最艰苦的最后训练时,她变得疲惫不堪,失去了战斗小组。从那时起,她仍然很优秀,但根据安德的说法,她已经失去了使她成为一名优秀指挥官的许多因素:她愿意承担风险。邦佐是安德在火蜥蜴军队的第一位指挥官。他讨厌安德年轻、聪明、有才华,也因为安德没有战斗经验。邦佐拒绝让他在军队中练习或战斗。在自由练习期间,邦佐带领一群大男孩在战斗室袭击安德的练习小组。当安德成为指挥官并在战斗中让邦佐的军队出丑时,邦佐与七个大朋友在淋浴间将安德逼入角落,打算杀死他。然而,他后来承认一对一战斗,出于西班牙人的荣誉感。安德果断获胜,击倒了邦佐,无意中杀死了他。当安德担任龙军指挥官时,卡恩担任兔军指挥官。尽管在战斗中失去了军队,卡恩仍保持尊严,尽管失败了,但仍对安德保持友善。卡恩在虫族战争期间成为安德的小队队长之一。丁克·米克是继佩特拉之后安德的第二个朋友,他晋升为士兵。丁克是鼠军的卡通领袖,他要求他的指挥官罗斯·德·诺斯用某人换安德。丁克和佩特拉几乎把安德所知道的一切都教给了他,包括战斗学校游戏本身并不重要——敌人是老师。丁克仍然是安德在虫族战争中最值得信赖的小队队长之一。他试图阻止邦佐攻击安德,但失败了。达普是安德的导师,向他展示爱和指导,尽管他也将他与他的发射小组的其他成员隔离开来。格拉夫和另一名 IF 军官两次提到皮努尔,他早些时候在战斗学校因不明原因自杀。他的死似乎与巨人的饮料有关,安德最终非常成功地解决了这个游戏。利维将军与格拉夫讨论了安德参与幻想游戏的情况,警告他不要伤害安德。安德·维金在整本书中面临各种冲突,包括与邦佐和斯蒂尔森的战斗等肢体冲突,导致他们死于他的手中。他还经历了内心的冲突,比如感觉被成年人操纵,在从事道德上有问题的活动时努力保持“良好”形象。此外,安德还必须应对战斗学校内部的等级权力斗争,包括他与格拉夫上校等指挥官和其他军队指挥官的关系。与虫族的真正冲突是安德的终极考验,迫使他面对战争和领导的道德。奥森·斯科特·卡德的《安德的游戏》中的背景对故事的冲突产生了重大影响。孤立的战斗学校空间站加速了其居民之间的自然竞争结构,迫使他们合作或相互对抗。低重力环境还教会他们创造性地思考战略,并为他们做好外太空战斗的准备。老师们故意设计规则让孩子们互相对抗,旨在培养坚强的性格和韧性。这种残酷的环境让学生们变得冷酷无情,只有安德例外,他务实却不玩世不恭。我们无法否认,安德遭受了极端的暴力和痛苦。旁观者的行为要么故意伤害他,要么袖手旁观,任由他受苦。据说,正是这种创伤经历帮助安德培养了拯救人类所需的技能。然而,安德也面临着内心的动荡,这源于他接受训练后面临的巨大压力。
危机总是在安全和自由之间做出艰难的妥协,COVID-19 疫情也不例外。各国政府实施了各种卫生限制措施,以减少病毒传播。在人工智能 (AI) 的帮助下,监控规模已上升到前所未有的水平。然而,这些技术也带来了许多风险,从潜在的错误或偏见,到在最初的危机持续时间之外的长期执行。公民应该意识到这些技术并非万无一失,并衡量错误的后果,以便做出明智的决定,决定他们想要接受什么,以及接受多长时间。为此,我们设计了一款严肃的游戏,形式是虚拟城镇公民之间的市政辩论。一些初步测试会议帮助我们改进了游戏设计,并证明了这款游戏在引发辩论和提高认识方面具有吸引力。