在这方面,Goodfellow和同事引入了生成的对抗网络(GAN),该网络(GANS)生成具有与其“真实”对应物相似特征的合成数据(2)。可以将此类创建的图像添加到现有数据集中,并可能提供大量图像以增强数据集中的多样性,并最终改善ML算法。gan在医学成像中的进一步应用包括增加患有孤儿疾病(3)的患者的数据集,或重复对更常见疾病的罕见呈现,以至于可以从真实图像中训练有效的ML算法(4-8)。此外,在实验室动物研究中,替代被视为进一步减少活动物使用的最终目标(9),使甘斯能够打开大门,以实施实施可能模拟疾病的发作或进展。
摘要。这项研究展示了一种新的方法,用于使用生成对抗网络(GAN)有效地生成现实的合成道路状况数据。由于手动数据收集的挑战和危险,我们提议利用GAN来增加加速度计的现实世界道路状况数据。实际加速度计的数据已预处理,并用于训练含有卷积和致密层的gan。定性分析揭示了生成的道路状况数据的视觉现实主义。定量评估还证明了GAN的高精度,精度和召回得分超过0.9。总体而言,这项研究强调了使用gans合成安全至关重要的驾驶数据的希望,从而规定了对详尽的手动数据收集的需求。我们提出的框架可以在道路状况监测和自动驾驶中进行进一步的研究和应用。
摘要 — 生成对抗网络 (GAN) 在语音处理等领域的时间序列数据生成方面取得了重要进展。GAN 的这种能力对于脑机接口 (BCI) 非常有用,因为收集大量样本可能既昂贵又耗时。为了解决这个问题,本文提出了一种为运动想象生成人工脑电图 (EEG) 数据的新方法。这里的 GAN 使用由双向长短期记忆神经元组成的生成器和鉴别器网络。使用来自 BCI 竞赛 IV 的数据集 2b 评估训练后的模型。该数据集包括左手和右手运动想象的试验。训练单独的 GAN 以生成与数据集中存在的两种试验类型相对应的人工 EEG 样本。为了进行评估,使用短期傅里叶变换和 Welch 功率谱密度比较真实和人工 EEG 信号的时频特性。结果表明,GAN 可以捕捉运动想象脑电图数据的重要特征,例如 beta 波段的功率变化。从 Welch 的功率谱密度来看,人工生成信号和原始信号的功率变化处于相似的频率区间。
摘要本文探讨了生成媒体的生动领域,重点介绍了文本的生产和符号分析。它使用了“文本”的广泛定义,该定义包括书面,视觉和交互式的形式,并说明了生成媒体如何重新定义内容创建者和工具的作用。利用罗马雅各布森的交流模型,文章高出了文本生产中动态决策过程,无论是人类还是人工智能。本文提供了一篇历史评论,该评论从1960年代早期的计算机艺术中生成媒体,直到1980年代和1990年代的挖掘设计工具到出现到当代AI技术,例如gans和gans的扩散模型。它标识了发电介质的关键特性:合成,动态,数字,组合和代理。讨论还解决了早期工具中未知的AI援助的转变,转换为当今媒体景观中无意中的AI生成的内容。本文的最后一部分将生成媒体接口分为三个
a b s t r a c t generativ e Adveranial网络(GAN)经常用于天文学中来构建数值模拟的模拟器。然而,培训甘斯可能会被证明是一项不稳定的任务,因为它们容易出现不稳定,并且经常导致模式崩溃问题。相反,扩散模型还具有在没有对抗训练的情况下生成高质量数据的能力。它在几个自然图像数据集方面表现出了优势。在这项研究中,我们通过一组来自散射变换的强大摘要统计数据进行了降级扩散概率模型(DDPM)(DDPM)(DDPM)(DDPM)(最坚固的gan类型之一)之间的定量比较。特别是,我们利用这两个模型来生成21 cm亮度温度映射的图像,作为一个案例研究,基于天体物理参数有条件地研究,这些参数与宇宙复离的过程相关。使用我们的新fr`echet散射距离(FSD)作为e v aluation指标,以定量比较生成模型和仿真之间的样本分布,我们证明了DDPM在各种训练集的大小上都优于stylegan2。通过Fisher的预测,我们证明,在我们的数据集中,StyleGAN 2以各种方式崩溃,而DDPM产生了更强大的生成。我们还探讨了无分类指导在DDPM中的作用,并仅在训练数据受到限制时才显示出对非零指导量表的偏好。我们的发现表明,扩散模型在生成准确的图像中提供了一种有希望的替代品。这些图像随后可以提供可靠的参数约束,尤其是在天体物理学领域。
摘要。网络安全的进步对于一个国家的经济和国家安全至关重要。随着数据传输和存储的指数增加,迫切需要新的威胁检测和缓解技术。网络安全已成为绝对的必要性,每天每天都有越来越多的传输网络,导致数据存储在服务器上的数据的指数增长。为了阻止将来的复杂攻击,有必要定期更新威胁检测和数据保存技术。生成对抗网络(GAN)是一类无监督的机器学习模型,可以生成合成数据。gan在基于AI的网络安全系统中变得重要,例如入侵检测,隐肌,密码学和异常检测。本文对将gans应用于网络安全的研究进行了全面综述,包括对这些研究中使用的流行网络安全数据集和甘恩模型架构的分析。
对抗过程。在gans,两个神经网络,发电机和歧视器中,在游戏理论竞争中,类似于Minimax游戏。发电机旨在生成类似于培训数据集的数据样本,而鉴别器则旨在在真实样本和假样品之间进行差异。这种对抗性动态驱动两个网络以连续改进:发电机试图生成越来越困难的样本,使歧视者以伪造为假的,而歧视者则努力更好地区分真实的样本与假样品。通过这个对抗过程,甘斯学会了生成高质量的现实数据样本,生成器逐渐掌握了真实数据的分布。这个最小值优化框架的基础是gan的基础,彻底改变了生成建模,从而在跨各个领域生成现实的合成数据方面取得了显着的进步。
生成对抗网络 (GAN) 是成对的深度学习算法,称为神经网络,它们同时进行训练。其中一个是生成器,经过训练可根据标签(例如“狗”、“棕色”、“友好”)产生新的输出,而第二个是鉴别器,它尝试将示例分类为真实的(来自域)或假的(由生成器生成),直到鉴别器定期被生成器“欺骗”。GAN 可以输出音频、视频和 3D 模型以及图像。
摘要:背景:近年来,针对皮肤状况的计算机辅助诊断已取得了重大进展,主要是由人工智能(AI)解决方案驱动的。,尽管取得了这种进步,但支持AI的系统的效率仍然受到高质量和大规模数据集的稀缺性的阻碍,这主要是由于隐私问题所致。方法:本研究通过使用生成的对抗网络(GANS)创建具有不同痤疮严重程度(轻度,中度和严重)的人脸的合成数据集来规避与现实世界痤疮数据集相关的隐私问题。此外,三个对象检测模型 - Yolov5,Yolov8和detectron2-用于评估增强数据集检测痤疮的功效。结果:将StyleGAN与这些模型集成在一起,结果证明了平均平均精度(MAP)分数:Yolov5:73.5%,Yolov8:73.6%,检测2:37.7%。这些得分超过没有gan的地图。结论:这项研究强调了GAN在产生合成面部痤疮图像中的有效性,并强调了利用gans和卷积神经网络(CNN)模型的重要性,以进行准确的痤疮检测。
有一个广泛的说法,即甘斯很难训练,文献中的甘恩建筑充满了经验技巧。我们提供了反对这一主张的证据,并在更原则的管理中建立了现代的基线。首先,我们得出了一个行为良好的正规相对论gan损失,该损失解决了以前通过一袋临时技巧解决的模式掉落和非连面问题。我们通过数学分析我们的损失,并证明它可以承认本地融合保证,这与大多数现有的相对论损失不同。第二,我们的新损失使我们能够丢弃所有临时技巧,并替换与现代体系结构共同使用的过时的骨架。以stylegan2为例,我们提出了简化和现代化的路线图,从而导致新的MINI-MILIST基线-R3GAN。尽管很简单,但我们的方法超过了FFHQ,ImageNet,Cifar和堆叠的MNIST数据集的StyleGAN2,并与最先进的gan和扩散模型进行了比较。