生长素诱导降解 (AID) 系统最初由 Dernburg 实验室引入秀丽隐杆线虫,现已成为研究基因功能的组织特异性和/或时间方面的一种广泛使用的方法(Zhang 等人,2015 年;Ashley 等人,2020 年;Martinez 等人,2020 年)。AID 系统利用植物来源的 E3 泛素连接酶 TIR1,在用植物生长激素生长素处理后特异性地降解与“降解决定子”标签融合的蛋白质。为了提高 AID 系统的实用性,Ward 实验室最近生成了一组扩展的 TIR1s 转基因,由不同的组织特异性启动子控制(Ashley 等人,2020 年)。在这里,我们旨在比较不同种系表达的 TIR1 转基因降解转录因子 LAG-1 的效率,该转录因子的 C 端带有降解决定子 (Chen et al. , 2020)。如图 1 所示,这些 TIR1 转基因由以下启动子驱动:gld-1p (Zhang et al. 2015)、mex-5p (Ashley et al. 2020)、sun-1p (Ashley et al. 2020) 和 pie-1p (Kasimatis et al. 2018),并含有所示的 C 端荧光蛋白和 3' 非翻译区 (图 1A)。
图1。基于质粒的CRISPR敲入的高度提高的克隆效率:(a)泳道1:NEB®DNA梯子标准(N3200S);泳道2:标准NEB®Q5PCR方案30个周期的Q5 PCR方案基于光涂抹和〜300bp的额外不需要的PCR产物导致过多的DNA,可重复出现30个周期。车道3-8:优化PDD162扩增的PCR循环编号。基于此数据,我们选择了15个周期作为PDD162所有后续扩增的最佳数字。(b)过多的PCR产物和DPNI消化不足会导致约35%的KLD连接克隆是错误的CAS9/SGRNA质粒。相反,优化PCR和KLD连接反应会导致90%的克隆具有正确的GRNA插入。(c)载体主链和用于
使用 dpy-10 Co-CRISPR 筛选标记和组装的核糖核蛋白复合物对 C. elegans rbm-3.2 基因进行 CRISPR/Cas9 编辑。
作者:G Vunjak-Novakovic · 2021 · 被引用 164 次 — 细胞对其体内和体外环境的整个环境作出反应,包括细胞因子、周围细胞、ECM 和物理力(图 1)。
摘要 我们提出了一种基于 Transformer 网络架构的自动化方法来追踪和识别秀丽隐杆线虫中的神经元,称为“快速深度神经对应”或 fDNC。该模型在经验得出的半合成数据上训练一次,然后预测保留的真实动物之间的神经对应关系。相同的预训练模型既可以跨时间追踪神经元,也可以识别不同个体之间的对应神经元。性能是针对手工注释的数据集进行评估的,包括 NeuroPAL(Yemini 等人,2021 年)。仅使用位置信息,该方法在追踪个体内神经元方面的准确率达到 79.1%,在识别个体间神经元方面的准确率达到 64.1%。当将该模型应用于另一个研究组发布的数据集时(Chaudhary 等人,2021 年),识别个体间神经元的准确率甚至更高(78.2%)。当使用 NeuroPAL 中的颜色信息时,我们的数据集上的准确率达到 74.7%。与之前的方法不同,fDNC 不需要将动物拉直或变换到标准坐标系中。该方法速度很快,可在 10 毫秒内预测对应关系,适合未来的实时应用。
逐个基因探索性状变异机制 在过去二十年中,由于全基因组测序和数量遗传学中混合效应模型方法的进步,发现性状变异背后的基因和机制的速度加快了。研究已经确定了影响牲畜、农作物、模型物种和人类中测量的各种性状的基因座的数量和效应,但在任何物种中,只有少数基因和分子机制得到验证。存在这种限制是因为尽管有大量候选基因的有力证据,但很难(或不可能)通过实验验证基因在许多物种的数量性状中的作用。这些数据有助于阐明性状随时间变化的模型以及这些变化背后的进化原理。因此,对进化感兴趣的研究人员需要确定导致不同种群表型差异的基因和机制。然而,大多数物种都具有高度的遗传多样性,这使得许多小效应基因座的定位和特定基因的验证变得困难甚至不可能 [ 1 ]。此外,文献中充斥着大量已识别的数量性状基因座 (QTL)(见词汇表)的例子,但特定基因和等位基因尚未通过精确的基因组操作进行验证,最多只能推断性状变异猜测的分子机制。一些物种可以缓解这些限制,并发现基因和机制,为了解不同种群性状变异的原因做出重大进展。
医学遗传学的一个基本问题是遗传背景如何改变突变的表型结果。我们通过关注线虫表皮中表现出干细胞特性的接缝细胞来解决这个问题。我们证明,与接缝细胞命运维持有关的 GATA 转录因子 egl-18 的假定无效突变在夏威夷的 CB4856 分离株中比在布里斯托尔的实验室参考菌株 N2 中更耐受。我们确定了两个分离株之间表型表现力差异的多个数量性状基因座 (QTL)。这些 QTL 揭示了通过增强 Wnt 信号传导来强化接缝细胞命运的隐秘遗传变异。在一个 QTL 区域内,CB4856 中的热休克蛋白 HSP-110 中的单个氨基酸缺失足以改变 Wnt 信号传导和接缝细胞发育,强调保守的热休克蛋白的自然变异可以塑造表型表现力。
汤加通用实践位于汤加塔邦主要岛上的Ha'ateiho,为大约75 000人提供服务(与六家政府诊所共享,一家全日制和四个兼职私人诊所;患者倾向于在实践之间“膨胀”)。这项研究的一般实践有大约6700名患者,在过去6年中至少参加了一次。服务费用为糖尿病的人会非常低,以鼓励定期随访;而且没有政府补贴。许多患有糖尿病的人参加了免费的政府医院诊所。练习护士进行了初步评估:通过葡萄糖表,体重,血压和尿液(以六个月的间隔)进行毛细血管标本的随机或空腹血糖,并经常提供饮食建议。然后,全科医生(GP)
摘要 - 我们检查具有不同饮食专业的啮齿动物中形态相似的消化道的功能调整的可能方法。我们研究胃和肠道上皮表面的结构,以及其在五种沙鼠种类中与微生物定殖的特征:psammomys obesus,Meriones Crassus,Gerbillus Henleyi,G。Andersoni和G. Dasyurus。通过先前的微生物学研究的结果获得并证实了与粘膜相关微生物群的形态多样性的数据。与饮食专业化相关的Chymus酸度的物种差异已确定。在内生葡萄糖酶微生物酶的活性中的变异也对啮齿类动物至关重要,这对于在纤维素 - 核心食品上喂养的啮齿动物至关重要。已经评估了微生物群对具有形态上相似消化道的啮齿动物中各种食物的功能适应的重要性。
ryanodine受体(RYR)是细胞钙稳态和signaling的必要调节剂。脊椎动物基因组包含多个RYR基因同工型,在不同的tisse中表达并执行不同的功能。相反,无脊椎动物基因组包含一个单一的RYR编码基因,长期以来一直提出,替代剪接产生的不同转录本可能会使它们的功能多样化。在这里,我们分析了c中替代外显子的表达和功能。秀丽隐杆线虫Ryr Gene UNC-68。我们表明,特定的同工型亚集是通过替代启动子和UNC-68 Diver-Gent区域2(DR2)中的替代剪接创建的,该区域实际上对应于跨脊椎动物同型跨脊椎动物高序列变异性的区域。特定的UNC-68替代外显子的表达富含不同的组织,例如体壁肌肉,神经元和咽肌。为了推断特定替代启动子和UNC-68的替代外显子的功能,我们通过CRISPR/CAS9基因组编辑选择性地删除了它们。我们评估了咽功能,以及在游泳和爬行的运动功能,并通过高含量的计算机辅助姿势和行为分析。我们的数据提供了同工型特异性突变的多效影响的综合图,并强调了组织特异性的UNC-68 ISO形式实现了不同的功能。整体上,我们的工作阐明了c。秀丽隐杆线虫单基因UNC-68可以通过组织特异性同工型完成多个任务,并为进一步发展c提供了坚实的基础。秀丽隐杆线虫作为研究RYR通道功能和故障的模型。