摘要:二维材料堆叠层的扭转层的应用导致Moiré模式的形成,并可能以决定性的方式改变系统电子性质。最初已证明这是扭曲的双层石墨烯,其相图包括非常规的超导性以及莫特绝缘状态。中间扭曲角度可作为一个参数驱动的中等相关的电子,使电子相关的态度是一个强烈相关的制度,这表明了用于高度控制材料的临时设计的新范式。铜 - 氧化薄膜和单层制造的最新进展为探索另一类扭曲的多层系统提供了一个机会,这些系统来自高温超导体。在这次演讲中,我概述了我们对扭曲的双层铜矿中超导状态的理论研究,在铜位点上,在微观T-J-U模型的框架中融合了铜位点上的强电子相关性。所获得的相图既包含无间隙的D波超导相位,又包含拓扑状态,它们会自发打破时间反转对称性。我们的结果将与最近的实验有关。
摘要:在口服微生物毒素中,甲烷抗素的质量(M. assiliense)的研究次数少于良好的特征和培养的甲烷素甲烷素的Oralis和甲烷抗素的甲烷素化剂。M. assiliense与不同的口服病理相关,并与一种严重的牙周炎中与Synergistetes细菌Permidobacter Piscolens(P. piscolens)共隔离。在这里,报道另外两个坏死性纸浆病例,有机会表征两个共培养的M. assiliense分离株,均为P. piscolens,均为p. piscolens,为非运动,1-2- µ m长,0.6-0.8- µm-m-m宽gram-lam-wide gram-strosity coccobaccilli,它们在420 nmms中自动燃料。两个整个基因组序列具有31.3%的GC含量,无间隙为1,834,388-Base Pair染色体,表现为85.9%的编码率,编码甲酸甲酸盐脱氢酶,促进M. assiliense M. assiliense M. assiliense M. assiliense生长,而无需GG培养基中的氢。这些数据为理解与P. piscolens及其在口腔病理中的作用的共生性,跨性别的关联铺平了道路。
摘要:本文将 Jordan-Lee-Preskill 算法(一种模拟平直空间量子场论的算法)推广到 3+1 维膨胀时空。推广后的算法包含编码处理、初态准备、膨胀过程和后期宇宙可观测量的量子测量。该算法有助于获得宇宙非高斯性的预测,可作为量子器件的有用基准问题,并检验膨胀微扰理论中关于相互作用真空的假设。我们的工作内容还包括对宇宙微扰理论的格子正则化的详细讨论、对 in-in 形式主义的详细讨论、对使用可能适用于 dS 和 AdS 时空的 HKLL 类型公式进行编码的讨论、对边界曲率微扰的讨论、对时间相关汉密尔顿量的三方 Trotter 模拟算法的描述、用于模拟无间隙理论的基态投影算法、对量子扩展的 Church-Turing 论题的讨论以及对在量子装置中模拟宇宙再加热的讨论。
我们表明,远离平衡超导的经典描述在局部可观察物的热力学极限中是精确的,但分解了全球数量,例如纠缠熵或loschmidt回声。我们通过解决并比较BCS超导体的精确量子和精确的经典长期动力学来做到这一点,并与时间成反比相互作用强度并明确评估局部可观察物。平均值对于热力学极限的正常平均值和异常平均(超导顺序)都是精确的。但是,对于异常的期望值,此极限并不能以绝热和强的耦合极限上下通勤,因此,它们的量子发光可能异常强。系统的长时间稳态是一种无间隙的超导体,仅通过能量解析测量值才能访问其超流体性能。这种状态是非热的,但符合新兴的广义吉布斯集团。我们的研究清楚地表达了对称性破碎的多体状态的性质,并在时间依赖性量子集成性理论中平衡和填补了一个关键的差距。
我们研究以相等的连续扭角排列在楼梯堆叠配置中排列的三层石墨烯。在Moiré晶体模式的顶部,出现了我们绝热处理的超莫雷长波长调制。对于每个山谷,我们发现两个中央频带是拓扑,Chern数字C =±1在Supermoiré尺度上形成Chern Mosaic。Chern域围绕高对称性堆叠点ABA或BAB,并通过连接频谱完全连接的AAA点的无间隙线将它们分开。在手性极限中,以θ〜1的魔法角度为单位。69◦,我们证明了中央频带在ABA和BAB处的理想量子曲率完全弯曲。此外,我们将它们分析为具有±2的固有颜色键入状态的叠加,而Chern Number normume∓1。为了与实验性配置联系起来,我们还以有限的波纹探索了非手续极限,并发现拓扑结实的Chern Mosaic模式确实很健壮,并且中央频带仍然与偏远频段分开。
1 简介:二次量子化、相互作用电子、哈伯德模型及其派生模型 1 横向磁场中的量子伊辛模型:通过 Jordan 1 Wigner、Fourier 和 Bogoliubov 变换的精确解。量子相变和临界性。有序与无序。对偶性。激发和畴壁。 1 纠缠熵:面积定律和对数发散。 3 半整数自旋链:海森堡反铁磁体、Lieb-Schultz-Mattis 1 定理、有序与无序、Goldstone 玻色子、Mermin-Wagner 定理、通过坐标 Bethe 假设的精确解。 4 整数自旋链:Haldane 猜想、Affleck-Kennedy-Tasaki-Lieb 模型、MPS(矩阵积态)和张量网络简介。无间隙边缘模式和对称保护拓扑序。 5 自由费米子系统的拓扑分类:拓扑绝缘体和超导体的周期表,Su-Schriefer-Heeger模型和Kitaev的量子线:拓扑简并和马约拉纳边缘模式。 6 高维自旋模型,自旋液体,规范理论和Kitaev的环面代码模型,拓扑序和任意子 还将有一个小组项目,可以选择为文献综述(例如量子霍尔效应,Levin-Wen弦网络模型,拓扑绝缘体,
Kitaev超导链是一种无旋转费米的模型,具有三胞胎样超导体。自从其参数的某些值以来,它引起了人们的兴趣,它提出了一个非平凡的拓扑阶段。在实际物理系统中,三胞胎超导性的稀缺性使Kitaev链的物理实现变得复杂。已经提出了许多建议,以克服这一困难并捏造人工三胞胎超导链。在这项工作中,我们研究了一个形成Cooper对的拼写的超导链,以S = 1状态,但S Z =0。的动机是,可以通过与S波超导底物的抗对称杂交相对诱导的链条诱导这种配对。我们研究边缘状态的性质和这些链的拓扑特性。在存在磁场的情况下,链可以用成对的费米亚点维持无间隙的超导性。这些费米点的动量空间拓扑是非平凡的,因为它们只能通过互相消灭而消失。对于小磁场,我们发现具有有限Zeemann Energy的良好定义的简并边缘模式。这些模式并非受到对称的保护,并且在散装中突然衰减,因为它们的能量与激发的连续体融合在一起。
DNA测序在近几十年来彻底改变了医学。,对大型结构变化和重复DNA的分析是人类基因组的标志,受到短阅读技术的限制,读取长度为100-300 bp。长阅读测序(LRS)允许使用合成的实时测序和基于纳米孔的DI-ERCT电子测序进行实时测序,将人DNA片段的常规示例分别为数百个千倍酶对。lrs允许分析人类基因组中的大型结构变异和单倍型相分化,并能够发现和表征罕见的致病结构变异和重复探索。它最近还可以组装一个完整的,无处不在的人类基因组,该基因组包括以前棘手的区域,例如高度重复的centromeres和同源性杂技短臂。通过添加用于靶向富集,直接表观遗传DNA修饰检测和远程染色质分析方案,LRS有望在人类种群中引发对遗传多样性和致病突变的新时代。
机载激光扫描 (ALS) 是一种在扩展区域内获取密集且精确点云的有效方法。为确保无间隙覆盖该区域,点云以条带形式收集,重叠程度相当大。这些重叠区域中包含的冗余信息可与地面实况数据一起使用,以重新校准 ALS 系统并补偿系统测量误差。此过程通常称为条带调整,可改善 ALS 条带的地理参考,换句话说,可提高获取的点云的数据质量。我们提出了一种全自动条带调整方法,该方法 (a) 使用原始扫描仪和轨迹测量,(b) 对整个 ALS 多传感器系统进行在职校准,以及 (c) 单独校正每个条带的轨迹误差。与迭代最近点 (ICP) 算法类似,在重叠的 ALS 条带的点之间迭代直接建立对应关系(避免耗时的点云分割和/或插值)。基于由 103 条条带组成的 ALS 块证明了该方法对大量数据的适用性。
摘要:在凝结物质系统中拓扑非平凡状态的探索以及它们的新运输特性,具有显着的研究兴趣。本评论旨在从量子厅绝缘子的初步提案开始,对代表性拓扑阶段进行全面概述。我们从简洁的介绍开始,然后对第一阶拓扑量子阶段进行详细检查,包括间隙和无间隙系统,涵盖了相关材料和实验中相关现象。随后,我们深入研究了异国高阶拓扑量子相的领域,研究了理论命题和实验发现。此外,我们讨论了高阶拓扑结构出现的基础机制,以及在实验验证表现出此类特性的材料中所涉及的挑战。最后,我们概述了未来的研究方向。本综述不仅系统地调查了各种拓扑量子状态,从一阶到高阶,而且还提出了实现高阶拓扑阶段的潜在方法,从而为检测实验中相关量子现象的检测提供了指导。