本文或演示文稿是Gaudí项目的一部分。Gaudí项目理念是通过获得频繁的反馈来改善。频繁的反馈是通过开放创建过程追求的。此文档以中间版本或几乎成熟的版本发布以获取反馈。只要文件保持完整且没有变化,就可以进一步分配。
选择最合适的保存方法对于维持生物中微生物的生命力,交流电,免疫原性和遗传稳定性至关重要(Simões2013)。最常见的保存技术是基于通过亚培养或通过脱水和冻结来维持持续生长的持续生长(Agarwal and Sharma 2006)。连续培养仅用于短期存储(Ryan等人。2000)由于该方法是费力的,并且经常重新培养可能会导致污染或SUD DEN菌株变性,这可能会导致病学,生理或毒力变化(Vasas等人。1998; Shivas等。 2005; Bégaud等。 2012; 2013)。 此外,许多微生物分类群目前是不可养殖的,因为合适的培养条件是未知的(Ryan等人 2000; Ryan等。 2019)。 因此,在超低温度下的冷冻干燥和冷冻保存被认为是长期存储的最佳方法(Ryan等人 2019)。1998; Shivas等。2005; Bégaud等。 2012; 2013)。 此外,许多微生物分类群目前是不可养殖的,因为合适的培养条件是未知的(Ryan等人 2000; Ryan等。 2019)。 因此,在超低温度下的冷冻干燥和冷冻保存被认为是长期存储的最佳方法(Ryan等人 2019)。2005; Bégaud等。2012; 2013)。此外,许多微生物分类群目前是不可养殖的,因为合适的培养条件是未知的(Ryan等人2000; Ryan等。2019)。因此,在超低温度下的冷冻干燥和冷冻保存被认为是长期存储的最佳方法(Ryan等人2019)。
Tripp Borstel,气候变化和可持续发展服务董事总经理,Ernst&Young Vrushali Gaud,Google Mark Kramer全球总监,一致性资本和母体新生儿健康创新Alicia Seiger,Stanford Doerr可持续发展学院访问学者Alicia Seiger
NMIMS Shirpur 主任 Ram Gaud 博士在开幕式上致欢迎辞。组织秘书 Venkatadri Marriboyina 博士在开幕式上致辞,介绍了会议背景并对接下来的讨论设定了期望。纪念品的揭幕标志着活动正式开始。NMIMS 副校长 Sharad Mhaiskar 博士强调促进合作、非正式交流、赋予农村青年权力、促进数字技术创新和卓越。SVKM 联合秘书 Jayant Gandhi 博士强调了合作和 2030 愿景对推动技术进步的重要性。凯捷公司首席技术官兼副总裁兼主宾 Mukesh Jain 先生发表致辞,分享了对当前和未来商业格局以及会议主题的宝贵见解和观点。NMIMS 副校长 Meena Chintamaneni 博士也出席了此次活动。
图 1:巴塞罗那桂尔公园的挡土墙................................................ ...................................................... 10 图 2:科洛尼亚桂尔教堂 – 高迪– Santa Coloma de Cervelló,巴塞罗那 - 1898 年...................................... 13 图 3:圣家族教堂,巴塞罗那 – 高迪 - 1882 年 - 实际上...... ...................................................... .. 16 图 4:图形平衡分析圣家堂的主殿(Sugrañes 1923)........ 20 图 5:都灵展览宫主厅(1950 年)。预制盖元件图 22 图 6:都灵劳动宫(1961 年)。 ........................................... ........................................... . 25 图 7:柱的立面图和剖面图...................................................... ........................................... 26 图8:从均衡图(A)到钢筋线(B)到肋板的定义(C)以及最终的天花板图案(D)................................ ........................................... ........................................... 27 图 9:均衡地面劳工宫。................................................ ................................... 28 图 10:Burgo 造纸厂,主要部件和尺寸。 ........................................... .......... 28 图 11:横截面(红色表示钢箱周围的钢筋)。..........
飞秒激光制造技术已应用于光子范围模式(DE)多路复用器。基于飞秒激光制造技术的当前光子灯笼模式(DE)多路复用器设计主要遵循纤维型光子光子灯笼设计,该设计使用具有非均匀波导的轨迹对称结构进行选择性模式激发。但是,非均匀的波导可能导致不一致的波导传输和耦合损失。轨迹对称设计的选择性模式激发效率低下。因此,我们使用具有均匀波导的轨迹不对称性和制造的超快激光默认的光子灯笼模式(DE)多路复用器优化了设计。在1550 nm处的一致的波导传输和耦合损耗(分别为0.1 db/cm和0.2 db/facet)在均匀的单模波导上获得。基于光子灯笼模式(DE)多路复用器的轨迹 - 空气设计,有效模式激发(,,和)的平均插入损失在1550 nm时的平均插入损失低至1 dB,并且模式依赖性损失小于0.3 db。光子范围的设计对极化不敏感,而两极分化确定的损失小于0.2 dB。以及通过纤维型极化光束拆分器所实现的偏振化多路复用,六个信号通道(,,,,和)携带42个Gaud/s正交相位移位键信号,通过几个模式纤维进行传输,用于光学透射。这项研究的发现为3D集成光子芯片在大容量光学传输系统中的实际应用铺平了道路。系统的平均插入损失小于5 dB,而其与几种模式纤维的最大串扰小于-12 dB,导致4-DB功率损失。
飞秒激光制造技术已应用于光子范围模式(DE)多路复用器。基于飞秒激光制造技术的当前光子灯笼模式(DE)多路复用器设计主要遵循纤维型光子光子灯笼设计,该设计使用具有非均匀波导的轨迹对称结构进行选择性模式激发。但是,非均匀的波导可能导致不一致的波导传输和耦合损失。轨迹对称设计的选择性模式激发效率低下。因此,我们使用具有均匀波导的轨迹不对称性和制造的超快激光默认的光子灯笼模式(DE)多路复用器优化了设计。在1550 nm处的一致的波导传输和耦合损耗(分别为0.1 db/cm和0.2 db/facet)在均匀的单模波导上获得。基于光子灯笼模式(DE)多路复用器的轨迹 - 空气设计,有效模式激发(,,和)的平均插入损失在1550 nm时的平均插入损失低至1 dB,并且模式依赖性损失小于0.3 db。光子范围的设计对极化不敏感,而两极分化确定的损失小于0.2 dB。以及通过纤维型极化光束拆分器所实现的偏振化多路复用,六个信号通道(,,,,和)携带42个Gaud/s正交相位移位键信号,通过几个模式纤维进行传输,用于光学透射。这项研究的发现为3D集成光子芯片在大容量光学传输系统中的实际应用铺平了道路。系统的平均插入损失小于5 dB,而其与几种模式纤维的最大串扰小于-12 dB,导致4-DB功率损失。
作为建筑师中最有争议的主题之一,参数设计通过基于算法的方法将意图与结果结合了结果,从而产生了吸引全球观众的复杂几何形状。本视频探讨了使参数设计如此独特的原因,从其起源到当前的软件应用程序。它首先检查了安东尼奥·高迪(Antonio Gaudi)颠倒教堂模型的工作中参数设计的早期起点,在那里使用悬挂的加权串创建了复杂的链条拱门。该视频还深入研究了其他开创性建筑师的贡献,例如Luigi Moretti,后者创造了“参数体系结构”一词和弗雷·奥托(Frei Otto),他的实验方法使用肥皂膜铺平了与参数建模的方式。近年来,软件包使设计人员更容易通过合并图表而不是文本的视觉脚本接口进行参数建模。诸如Grasshopper,生成组件和Dynamo之类的程序使建筑师可以快速有效地创建复杂的设计,从而在其创造性方法中为它们提供了前所未有的灵活性。随着架构和设计数字工具的兴起,参数架构已成为一个革命性的概念,正在改变建筑物的设计和构建方式。它不仅定义了一组参数和规则,而且还会生成复杂的可自定义设计,这些设计难以手动实现。它的应用不仅可以在建筑中看到,还可以在产品设计,家具设计,时装设计甚至动画中看到。这就像一部科幻电影中的东西!在计算机模型中使用各种设计选项播放的过程使建筑师和设计师可以突破可能的边界,从而使参数架构成为一个令人兴奋的领域,超越了传统的建筑实践。参数模型与手动建模相比提供了一种更有效,更具成本效益的方法来彻底改变建筑设计。这些设计依赖于决定其形式的预定的计算机算法或参数,从而可以提高精确性和独创性。使用参数和变量的使用使设计人员能够操纵结构的各个方面,例如尺寸,角度和材料特征,从而促进锻造性和灵活性。算法设计是参数体系结构的一个基本方面,利用数学算法来改变参数并产生符合特定标准的设计。这种方法既鼓励了创造力又可以精确,从而使建筑师轻松地生成复杂的形状和形式。生成建模使设计师能够快速测试众多概念,并通过迭代调整来完善他们的想法。参数设计在建筑设计中有许多应用,包括可持续设计,建筑师可以优化建筑物的功能以提高能源效率并减少浪费。通过微调参数,例如绝缘,方向和材料,绿色设计变得更加实用。此外,参数设计在生成复杂的有机形式方面擅长展示独创性和创造力。但是,技术使建筑师能够快速解决设计问题。参数体系结构还可以在立面设计中亮起,从而允许创建对环境条件做出反应的视觉令人惊叹和动态的外墙。建筑师可以操纵参数以创建功能和艺术元素,从而突破建筑物设计的界限。为了有效地实施参数体系结构,建筑师依赖于专业的软件和工具,包括蚱hopper,犀牛3D和发电机。这些工具使设计师能够轻松创建复杂的模型,从而促进建筑设计中的创新和创造力。参数设计:探索参数设计基本原理的革命性方法可以创建参数模型,从而允许设计探索和空间创建。与建筑师和工程师等专业人士的合作,可以增强知识共享和进步。数字制造技术可以精确地转化为物理世界,从而通过能源效率和可持续性提供长期节省。存在挑战,包括对复杂性,施工困难以及工艺的潜在丧失的关注。参数设计代表了体系结构的重大转变,从而创建了触觉上令人震惊但功能高效且可持续的结构。随着技术的不断发展,AI准备领导塑造明天的城市和建筑物。Zaha Hadid的陈述“有360度,那为什么要坚持一个呢?”强调了现代参数设计的创新性质,它违反了惯例并突破了建筑的界限。谁知道?参数设计是一种建筑方法,已经存在了几个世纪,但其名称是由Patrik Schumacher在2008年创造的。此方法使用计算机算法来创建复杂的结构和形状,从而通过参数和规则在设计响应与意图之间建立联系。与传统的体系结构相反,参数设计依赖于算法程序来雕刻建筑和工程组件之类的功能。其对输入参数的使用,称为“参数”,允许建筑师在设计的各种迭代中实验,同时确保所得的结构保持在纯压缩中。参数设计不是一个新概念;众所周知,安东尼·高德(Antoni Gaud)使用机械模型来创建自己的建筑物,并在19世纪结束时使用参数方法。他在教堂颠倒模型上的工作展示了这种方法的潜力,使他能够改变每个拱门的形状,并观察其如何影响连接的拱门。参数架构的开发涉及多个建筑师,包括Luigi Moretti和Frei Otto,他们使用了非数字技术,例如肥皂膜和路线来确定紧张紧张结构的最佳设计。参数建模的探索性方面已经引起了两类:基于传播的系统,这些系统从原始输入和约束系统中产生未知的形状,这些系统使用算法定义了必需品。根据某些限制进行了调整设计目标,例如一个永不停止发展的难题。在设计和架构中,“旧的是新的”,通常是正确的。参数设计已经摆脱了年龄的传统规则,将脚本翻转为我们认为的可能性。是直接线和角度的日子;参数主义是关于使每个结构一种一种结构的一种大胆,清晰的曲线。通过结合复杂性和变化,参数设计就是要拥抱个性,拒绝曲奇切口的架构方法。设计师现在使用计算机技术来分析和模仿自然的复杂模式,将其应用于建筑形状和城市规划。不仅仅是在结构上扔一些曲线;这是关于创建适应周围环境并优先考虑形式和功能的系统。说实话,谁不喜欢他们的设计有些惊喜和喜悦?参数形式可以是数学上的或手动定义的,但是使用算法就像拥有超级大国一样 - 它使设计人员可以专注于更大的图景,而计算机则处理零用的细节。这些创新的设计不仅仅是美学;他们是要创建功能性且鼓舞人心的空间。通过利用计算机的力量,建筑师和设计师的力量可以突破可能的界限并创造真正独特的体验。也许有一天我们将拥有类似于珊瑚礁或森林的建筑物,而不仅仅是弯曲的盒子!设计的未来就是拥抱复杂性,个性和魔力。参数设计彻底改变了建筑行业,使建筑师能够创建复杂而创新的结构,从而突破传统设计的界限。使用数字工具和软件的使用为建筑师提供了前所未有的灵活性和表达方式,从而使他们能够探索广泛的创意可能性而无需限制。Zaha Hadid Architects是一个很好的例子,其建筑物具有光滑,流动的曲线,没有可见的角或边缘。同样,让·诺维尔(Jean Nouvel)的卢浮宫阿布·达比(Abu Dabi)展示了参数设计在创建复杂和令人印象深刻的结构中的潜力。其他值得注意的例子包括北京的Galaxy Soho购物中心和世界贸易中心运输中心的Santiago Calatrava的Oculus。参数设计不仅涉及技术规格,而且还为建筑师提供了一种新的语言来传达他们的想法和愿景。虽然掌握基本概念可能具有挑战性,但数字解决方案使其更容易访问和用户友好。软件包现在提供视觉脚本界面,使设计人员可以将参数映射到功能,从而导致精确而准确的几何形状。参数设计的好处很明显:它在建筑设计中提供了无与伦比的灵活性和创造力,使建筑师可以探索新的可能性而无需限制。