表观遗传学通过调节基因表达而不改变DNA序列在衰老和寿命中起着至关重要的作用。最近的研究表明,表观遗传修饰,例如DNA甲基化,组蛋白修饰和非编码RNA相互作用,会导致衰老过程,并且可能受到外部因素的影响。生活方式干预措施,包括饮食,体育锻炼,压力管理和睡眠优化,已通过调节表观遗传标记来逆转生物年龄的结果。本文探讨了表观遗传老化的机制,环境和生活方式因素的影响以及利用表观遗传可塑性的策略来实现健康和寿命。了解这些机制为开发有针对性的干预措施促进健康衰老并延长寿命铺平了道路。
2020年,锂离子电池(LIB)的市场达到了230 gwh的能力。汽车市场是最大的应用程序(69%),由于2000年不到LIB市场的1%,因此在过去的十年中,其份额已大大增加[1]。减少电动汽车(EV)的环境影响需要电池的生态设计,因为它占电动电动汽车总温室排放气体(GES)的41%[2]。过去几年的电池电池已经领导了大量的生命周期评估(LCA)[3] - [10]。大多数关注生产阶段[11]和气候变化影响类别[4],[11],[12]。结果范围从53千克CO 2 EQ/kWh到313千克CO 2 EQ/kWh [4],[11] - [13]。由几位作者突出显示,由于使用多个功能单元,研究之间出现了很大的可变性,
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
本论文是 IMS 实验室、波尔多大学和斯伦贝谢研究与生产部门的合作研究。我要感谢所有人的帮助和耐心,使这份手稿得以实现。首先,我要对我的导师 Cristell Ma-neux 和 Yann Deval 表示深深的谢意,感谢他们的持续支持和宝贵指导。特别是,我要向 Cristell 表示最深切和最诚挚的感谢,她为完成这项工作做出了重大贡献。多亏了她从一开始就提供的宝贵和有益的建议,我才能将这项研究推向正确的轨道。我很感激她在我刚开始问最愚蠢的问题时对我如此耐心。在她用红色写的详细修改后,我感觉自己一天天在进步,对此我深表感激。我还要感谢我在斯伦贝谢的导师 Claire Tassin。从我到达的第一天起,她就帮助我融入了公司。在她的协助和热情支持下,我在斯伦贝谢的实验得以尽快完成。她给了我明确的方向,让我可以坚持下去。我真的很感激她总是在我需要帮助的时候出现。在 ASIC 团队中,我要感谢 Mohamed Salim Cherchali 让我熟悉了编写自动测试台的代码行。他非常耐心地直截了当地解释了 Python 的基础知识,为我以后自学奠定了基础。他还教我如何使用斯伦贝谢实验室的仪器进行实验。此外,我还要感谢 Toshihiro Nomura,他总是以详细和及时的方式回答我的小问题。当我的实验装置出现问题时,他是我第一个去找的人。在装置的最初几天,遇到了很多困难和技术问题。Toshi 和 Salim 必须经常在实验室呆到晚上 9 点以后,帮助我找到问题并一起找到解决方案。我们失败了很多次才完成整个装置。多亏了他们知识渊博、热情洋溢的指导,我的测量得以进行,我从他们的实践经验中学到了很多新东西。感谢 IMS 实验室前秘书 Simone Dang Van 和她的丈夫偶尔在周末到他们家,他们家很宽敞,热情欢迎我。他们向我讲解了很多关于法国文化的知识,帮助我从一开始就融入了波尔多的生活。我还要感谢 IMS 实验室的所有朋友,感谢我们一起共进午餐,一起交谈,分享困难,互相鼓励,克服困难。感谢我的越南朋友,他们也是法国不同城市的博士生,他们总是陪在我身边,鼓励和“提醒”我经常锻炼。假期我们一起旅行,想家的时候互相安慰。
b'\xc2\xb9 意大利巴里大学教育、心理学和传播系 \xc2\xb2 意大利巴里大学药学系 \xc2\xb3 意大利巴里大学医学院:基础医学、神经科学和感觉器官 意大利巴里大学医学院:跨学科医学 奥胡斯大学临床医学系和奥胡斯/奥尔堡皇家音乐学院大脑音乐中心 (MIB),丹麦奥胡斯 * 两位作者贡献相同,并且是第一共同作者 通信地址:Mariangela Lippolis,Palazzo Chiaia - Napolitano Via Scipione Crisanzio, 42, 70121,巴里。电子邮件:mariangela.lippolis@uniba.it Elvira Brattico,奥胡斯大学临床医学系,Universitetsbyen 3,建筑 1710,8000 Aarhus C,丹麦。电子邮件:elvira.brattico@clin.au.dk 致谢:本研究由欧盟资助,属于 MUR PNRR 一项新颖的公私联盟,旨在为包容性的意大利老龄化社会提供社会经济、生物医学和技术解决方案(项目编号 PE00000015,AGE-IT)。'
本文介绍了一种测试台的开发,用于测量 Xilinx 的 Zynq UltraScale + FPGA 中使用的 16nm FinFET 的老化情况。在设置中选择并实施了环形振荡器 (RO) 漂移测量方法。然而,RO 电路不仅对老化敏感,而且对温度和电压也敏感。为了减轻对温度和电压的不良敏感性,我们安装了一个调节系统来控制 FPGA 的温度和内部电压,并根据温度和电压表征 RO 频率以应用后测量补偿。我们通过使用 GPS 信号作为时间参考改进了测量电路。进行了 1000 小时测试,测试温度为 (T FPGA = 100 ◦ C) ,测试温度为 (V FPGA = V nom + 25%),结果显示 RO 频率漂移明显低于 0.1%,测量精度为 0.9 × 10 − 4。
在她1969年的自传中,我知道为什么笼中的鸟儿唱歌,诗人和作家玛雅·安杰卢(Maya Angelou)记得她的母亲是飓风和彩虹,象征着他们关系的极端性质的对比性质。第152页,Abdulai-Saiku等。1报告对小鼠的一项研究表明,从母亲到女儿传递的基因表达模式可能会对生活的不同阶段的记忆产生类似的对比影响。这样做,他们提供了“女性间”变化范式的新证据。在哺乳动物中,大多数染色体对在雄性和女性之间都是相同的,但是一对性染色体是不同的。通常,女性有两个X染色体(XX),而男性有一个X染色体和一个Y染色体(XY)。性染色体不仅会影响发育中的胚胎性别以及以后的卵或精子的形成,而且还影响性别之间的解剖学,生理和疾病敏感性的差异。研究人员开始以惊人的精度缩小这些影响的原因。例如,女性比男性更容易发生自身免疫性疾病,例如狼疮,部分原因是她们通常携带两个X染色体。X染色体基因TLR7的升高水平升高是该倾向2的概率贡献者。相比之下,男性似乎从Y染色体的存在中受益:在某些细胞中,它可能随着年龄的增长而丢失,这与阿尔茨海默氏病的风险增加有关。揭示哪些性染色体基因对这些作用负责是个性化医学的主要目标。大多数这些“印迹”基因X和Y染色体的数量对于性别差异很重要,但另一个有影响力的过程是基因组印记。大多数基因都是从染色体的两个副本中表达的,其中一个是从母亲那里继承的,另一个是从父亲那里继承的。,但某些基因仅从母体拷贝或仅从父亲的副本中表达。
b IRT Saint-Exupéry,图卢兹,法国 摘要 本文提出了 SiC MOSFET 栅极在重复短路应力下的老化规律。基于分析研究、物理形式和预处理数据,提出了基于应力变量 T j、T 脉冲栅极损伤 % 和 E sc 的数值拟合。对老化规律的准确性和预测能力进行了评估和比较。结果提出了一种基于 T Al_Top 金属源的新老化规律。该规律的拟合精度最高。最后,直接基于短路能量 E sc 的老化规律似乎具有最佳的预测能力。 1. 简介 SiC MOSFET 提高了功率转换器效率 [1]。如今,必须保证意外极端操作中的可靠性和稳健性。然而,由于平面结构中的电流密度更高和通道更短,SiC MOSFET 的短路 (SC) 耐受时间 (T SCWT @2/3 x V DSmax ) 低于硅器件,t SCWT = 2μs,而 Si IGBT 的 t SCWT = 10μs。最近,人们投入了大量精力来研究短路测试下的专用 SiC MOSFET 故障机制 [2,3]。高温变化导致栅极区域和 Al 源金属周围产生累积热机械应力。这些通常导致 SiC MOSFET 无法超过源自硅标准的 1000 次重复短路循环阈值。在 SiC MOSFET 栅极损坏之前,对其允许的短路循环次数的预测目前尚不为人所知,但这却是运行阶段主要关注的问题。在 [4] 中,提出了威布尔分布和直接 T j Coffin-Manson 老化定律,但漏源电压偏置降低至 200V,并使用栅极沟槽器件。在 [5] 中,作者通过实验证实了栅极老化与 T j 应力的依赖关系,但未拟合 Coffin-Manson 参数,因此未提出预测能力。在本文中,进行了重复的 SC 研究,以建模并提出一组 SiC MOSFET 上的预测分析栅极老化定律
延长了一些生物的寿命。这可能是通过对Sirtuin-1的直接或间接作用介导的,Sirtuin-1是一种调节基因表达和细胞代谢的蛋白质,并且是Geroscience研究的重点,作为抗衰老的靶标。在组织模型中,白藜芦醇减少了衰老肺泡免疫细胞的炎症。但是,一项针对COPD患者的小型临床试验发现没有临床益处,参与者的体重减轻了,主要是瘦肌肉质量[2]。白藜芦醇的生物利用度较差(又称体内吸收),现在正在探索类似的化合物,具有更大的生物利用度和更有效的抗炎特性。
摘要:从材料和功能耐久性的角度研究并报告了热老化、疲劳和热机械老化对柔性微电子 12 器件的影响。研究了封装材料和基板的降解 13 机制。分析了封装材料和基板 14 材料的性能变化,并确定了它们在柔性器件失效机制中的关系。15 在热老化条件下,树脂的硬化与测试载体中的分层有关,这会导致功能性电气性能的丧失。降解是由于在 120°C 的热氧化过程中发生了突出的交联 17 反应。疲劳 18 应力测试后,树脂会发生适度硬化。虽然后者的硬化同样与交联反应有关,但在这里,硬化 19 不能由树脂的热降解引起,因为所用的应力频率很低。20 相反,热机械耦合发生在两个阶段。在温和条件下,降解 21 机制对应于热老化和疲劳过程的综合效应。在更严酷的热机械条件下,断链机制变得更加有效,并导致树脂软化 23。24