开发一种基于人工智能 (AI) 的方法,用于检测接受 FDG-PET/CT 分期的霍奇金淋巴瘤 (HL) 患者的局灶性骨骼/骨髓摄取 (BMU)。将单独测试组的 AI 结果与独立医生的解释进行比较。使用卷积神经网络对骨骼和骨髓进行分割。AI 的训练基于 153 名未接受治疗的患者。骨摄取明显高于平均 BMU 的被标记为异常,并根据总异常摄取平方计算指数以识别局灶性摄取。指数高于预定义阈值的患者被解释为具有局灶性摄取。作为测试组,回顾性纳入了 48 名在 2017-2018 年期间接受过分期 FDG-PET/CT 且活检证实患有 HL 的未接受治疗患者。十位医生根据局灶性骨骼/BMU 对 48 例病例进行分类。在 48 例 (81%) 的局部骨骼/骨髓受累病例中,大多数医生同意 AI 的观点。医生之间的观察者间一致性为中等,Kappa 值为 0.51(范围为 0.25–0.80)。可以开发一种基于 AI 的方法来突出显示使用 FDG-PET/CT 分期的 HL 患者中的可疑局部骨骼/BMU。核医学医生之间关于局部 BMU 的观察者间一致性为中等。
摘要:人工智能生成的内容在人们生活中的出现越来越多,而能够有效浏览和区分此类内容的重要性与透明度有着内在联系,我们的研究重点是透明度,我们通过评估《人工智能法案》第 50 条来研究这一概念。本文呼吁采取行动,在指定《人工智能法案》的透明度要求时考虑最终用户的利益。它侧重于一个特定的用例——媒体组织在生成人工智能的帮助下制作文本。我们认为,目前的形式下,第 50 条留下了许多不确定性,并且有可能在保护自然人免受操纵或赋予他们采取保护行动的权力方面做得太少。本文结合文献和调查数据分析(基于代表荷兰人口的样本),就《人工智能法案》透明度义务的实施提出了具体的政策和监管建议。其主要目的是回答以下问题:如何协调《人工智能法案》适用于人工智能生成的数字新闻文章的透明度规定与新闻读者对操纵和赋权的看法?
征文:教育和教育研究中的人工智能国际研讨会 (AIEER) AIEER 2024 教育和教育研究中的人工智能国际研讨会是第 27 届欧洲人工智能会议 ECAI 2024 [https://www.ecai2024.eu/] 的一部分。本次研讨会定于 2024 年 10 月 19 日至 20 日星期六和星期日举行。 研讨会范围 本次研讨会有两个不同的重点,旨在更广泛地面向教育人工智能领域。 第 1 部分。由社会科学主导的讨论,讨论人工智能应用可能有助于解决的教育中的实际问题。这包括教育和教学人工智能的研究,也包括社会科学、经济学和人文学科,包括所有学科,如教育和教学实际行动、以教育需求为重点的劳动力市场研究、教育史和相关教育文化遗产,以及决策和行为科学观点的信息预测。一方面,我们关注人工智能、教育和社会之间的联系。这包括定量和定性研究、分析教育和劳动力市场数据的数据科学方法、推荐系统的人工智能方法以及数字化学习。另一方面,我们关注如何使用人工智能来突破该领域的界限。这包括开发新方法(包括使用人工智能的方法)、寻找和提供可访问的新数据源、丰富数据等等。在这两种情况下,不同观点之间的沟通和相互理解至关重要,这也是本次研讨会的目标之一。更广泛地说,我们感兴趣的是人工智能方法如何影响教育的所有领域以及企业和劳动力市场。这包括从小学到高等教育的所有教育部门如何受到人工智能方法的影响和对其作出反应的方法。用人工智能方法设计数字化未来为教育提出了几个问题:在最广泛的层面上,立法和规范问题;在公司层面,关于投资决策以及如何保持生产力和劳动力的问题;在个人层面,关于资格以及哪些技能需要应用和可能重新学习的问题。因此,技能和资格是教育和教育研究中人工智能的核心。第 2 部分。关于可以开发哪些人工智能应用程序(以及如何开发)来解决第 1 部分提出的问题的(计算机科学主导)讨论。使用基于人工智能的系统来支持教学或学习已经发展了 40 多年,但近年来,由于 COVID-19 大流行期间电子学习工具的使用增加以及最近生成人工智能的爆炸式增长,其增长显着增加。我们正处于这一领域发展的关键时刻,人工智能专家和教育专家必须携手合作,以在教学过程中最佳地利用这项技术。本次研讨会旨在为展示新提案和反思这一具有如此社会意义的领域的最新技术创造空间。在第一部分中,我们特别关注人工智能的技术方面,重点关注用于内容创建(生成式人工智能)、学生分析(机器学习)、学习分析或教师可解释的人工智能方法的具体技术
本关键信息备忘录 (KIM) 列出了潜在投资者在投资前应该了解的信息。有关计划/共同基金的更多详细信息、资产管理公司尽职调查证书、关键人员、投资者权利和服务、风险因素、处罚和未决诉讼等,投资者在投资前应参阅计划信息文件和补充信息声明,这些文件和声明可在任何投资者服务中心或分销商处免费获取,也可从网站 www.miraeassetmf.co.in 获取。计划细节根据 1996 年印度证券交易委员会 (共同基金) 条例(迄今已修订)编制,并已提交印度证券交易委员会 (SEBI)。SEBI 尚未批准或否决公开认购的单位,SEBI 也未认证本 KIM 的准确性或充分性。本关键信息备忘录的日期为 2024 年 11 月 30 日
全面贯彻党的十九大和十九届二中、三中、四中全会精神,落实党中央、国务院关于新一代人工智能发展的决策部署,坚持市场驱动与政府引导相结合,按照“统筹规划、分类施策、市场主导、急用先行、跨界融合、协同推进、自主创新、开放协作”的原则,立足国内需求,放眼国际,建立新一代人工智能国家标准体系,加强标准顶层设计和宏观指导。加快创新技术与应用转化为标准,加强标准实施和监督,推动创新成果与产业深度融合。注重对智能制造、工业互联网、机器人、车联网等相关标准体系的统筹和支撑。深化人工智能标准国际交流合作,注重国际国内标准协同,充分发挥标准对人工智能发展的支撑引领作用,保障高质量发展。
摘要 应对可持续发展政策挑战需要能够驾驭复杂性的工具,以改善政策流程和结果。过去十年来,人们对人工智能 (AI) 工具的关注度和政府对其使用的期望急剧上升。我们对学术和灰色文献进行了叙述性回顾,以调查人工智能工具如何用于政策和公共部门决策。我们发现,学者、政府和顾问对人工智能表达了积极的期望,认为人工智能可以或应该用于解决广泛的政策挑战。然而,关于公共决策者如何实际使用人工智能工具或对使用结果的详细洞察的证据却少得多。从我们的研究结果中,我们得出了将人工智能的承诺转化为实践的四个教训:1) 记录和评估人工智能在现实世界中对可持续发展政策问题的应用;2) 关注现有和成熟的人工智能技术,而不是投机性的承诺或外部压力;3) 从要解决的问题开始,而不是要应用的技术;4) 预测并适应可持续发展政策问题的复杂性。
○ “第三种可能性可能在短短几年内出现,即当人工智能被赋予一个目标,包括或暗示维持其自身代理时,失去控制,这相当于生存目标。这可能是人类创造者有意为之,也可能是实现人类给定目标的一种手段(让人想起电影《2001:太空漫游》)。事实上,人工智能系统可能会得出结论,为了实现给定的目标,它不能被关闭。如果人类试图关闭它,可能会发生冲突。这听起来像科幻小说,但它是可靠的、真实的计算机科学。”
Brian Drake 是国防情报局未来能力与创新办公室的人工智能主任。他领导该机构的人工智能研究和开发投资组合。作为一名分析师,他领导多个团队应对来自国家和非国家行为者的威胁,涉及技术、反情报和禁毒主题。他曾担任德勤咨询公司的经理和托夫勒联合公司的管理顾问,专门为商业和政府客户提供战略规划、业务发展、合作咨询、技术和创新服务。他还曾担任系统规划和分析公司的军事平台和政策分析师以及 DynCorp 的核武器计划分析师。他拥有默瑟大学的文学学士学位和乔治城大学的硕士学位。除了他的官方职责外,他还是国防情报纪念基金会的总裁兼首席执行官;为阵亡国防情报官员的子女设立的奖学金基金。
建议的工作流程 建议的工作流程是,该人应该在网站上申请证书,该网站将首先确定是否存在基准残疾。智能助手和视频分析将有助于做出这一决定。将设置一个网络摄像头,其中包含预先指定的问题和预先指定的带有说明的协议。提供用于评估残疾的视频指南和说明手册将有助于以足够的信心得出结论,即患者是否有基准残疾。上诉机构将处理任何上诉。如果它确实符合基准残疾的条件,AI 将填写 WHO 的 ICF 核心集以创建功能档案;使用远程医疗来衡量能力和绩效,这可能取决于环境和社会规范
免疫治疗被广泛认为是一种很有前途的癌症治疗方法,但肿瘤微环境(TME)的免疫效应相抑制和免疫相关不良事件的产生限制了它的应用。研究表明,声动力疗法(SDT)能在杀死肿瘤细胞的同时有效激活抗肿瘤免疫。SDT产生肿瘤的细胞毒物质,然后在超声作用下选择性激活声敏剂,导致细胞凋亡和免疫原性死亡。近年来,各种SDT单独使用以及SDT与其他疗法联合使用被开发来诱导免疫原性细胞死亡(ICD)和增强免疫治疗。本文综述了近年来SDT与纳米技术的研究进展,包括单独使用SDT的策略、基于SDT的协同诱导抗肿瘤免疫的策略以及基于SDT的多模态免疫治疗的免疫疗法。最后讨论了这些基于SDT的疗法在癌症免疫治疗中的前景与挑战。
